期刊文献+

利用高维互信息的多模态医学图像配准 被引量:4

Multi-modality medical image registration using high dimension mutual information
下载PDF
导出
摘要 互信息相似性测度在多模态医学图像配准中获得了广泛的应用,然而其不足之处在于没用充分利用图像固有的空间信息。针对这一不足,提出了利用图像邻域信息的高维互信息配准方法。首先用图像像素及其邻域构成高维向量的集合,然后利用基于最近邻的熵估计法来估计集合的高维熵,并采用近似最近邻搜索算法来加快高维熵的计算。实验结果验证了新的相似性测度的有效性。 Mutual Information(MI) based similarity measure has been widely used in muhi-modal medical image registration.One drawback of MI, however, is that it fails to take into account the spatial information of image.In this paper,we propose a novel extension to MI called High-dimension Mutual Information(HMI).This extension takes advantage of neighbor pixels to construct a set of high dimension vector,and then evaluates high dimension entropy using an algorithm based on Nearest Neighbor Search (NNS).In order to compute HMI effectively,we adopt an algorithm called approximate nearest neighbor search.Experiments demonstrate the validation of the extended methods.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第24期242-245,共4页 Computer Engineering and Applications
关键词 高维互信息多模态医学图像图像配准 High-dimension Mutual Information(HMI) muhi-modality medical image image registration
  • 相关文献

参考文献13

  • 1Viola P,Wells W.Alignment by maximization of mutual information[C]//Proceedings of the 5th International Conference on Computer Vision,Boston,MA,1995:16-23.
  • 2Collignon A,Maes F,Vandermeulen D,et al.Automated multimodality image registration using information theory[C]//Proceedings of the Information Processing in Medical Imaging Conference,Dordrecht,1995:263-274.
  • 3Studholme C,Hill D L G,Hawkes D J.An overlap invariant entropy measures of 3D medical image alignment[J].Pattern Recognition,1999,32(1):71-86.
  • 4Pluim J P,Maintz J,Viergever M A.Image registration by maximization of combined mutual information and gradient information[J].IEEE Transactions on Medical Imaging,2000,19(8):809-814.
  • 5Rueckert D,Clarkson M J,Hill D L G,et al.Non-rigid registration using higher-order mutual information[C]//Proc SPIE Medical Imaging 2000:Image Processing,San Diego,2000:438-447.
  • 6Sabuncu M R,Ramadge P J.Spatial information in entropy-based image registration[C]//Proceedings of 2nd workshop in biomedical image registration(WBIR'03),Philadelphia,USA,2003:132-141.
  • 7Holden M,Grin L D,Hill D L G.Multi-dimensional mutual information image similarity metrics based on derivatives of linear scale space[C]//Lovell B C,Maeder A J.Proceedings of the APRS Workshop on Digital Image Computing,2005:55-60.
  • 8Karplus M,Kushik J N.Method for estimating the configurational entropy of macromolecules[J].Macromolecules,1981,14:325-332.
  • 9Kozachenko L F,Leonenko N N.Sample estimates of entropy of a random vector[J].Problems of Information Transmission,1987,23:95-101.
  • 10Victor J.Binless strategies for estimation of information from neural data[J].Physical Review E,2002,66:51903-51918.

二级参考文献28

  • 1[6]Pan J S,Mclnnes F R,Jack M A.Bound for minkowski metric or quadratic metric applied to VQ codeword search [J].IEE Proceedings-Vision,Image and Signal Processing,1996,143(1) :67-71.
  • 2[7]Orchard M T.A fast nearest neighbor search algorithm [A].International Conference on ASSP [C],1991:2297-2300.
  • 3[8]Vidal E.An algorithm for finding nearest neighbors in (approximately)constant average time [J].Pattern Recognition Letters,1986,54:145-157.
  • 4[9]Li W,Salari E.A fast vector quantization encoding method for image compression [J].IEEE Transactions on Circuits and Systems for Video Technology,1995,5(2):119-123.
  • 5[11]Guan L,Kamel M.Equal-average hyperplane partitioning method for vector quantization of image data [J].Pattern Recognition Letters,1992:693-699.
  • 6[12]Pan J S,Huang K C.A new vector quantization image coding algorithm based on the extension of the bound for minkowski metric [J].PatternRecognition,1998,31(11):1757-1760.
  • 7[13]Lee C H,Chen L H.Fast closest codeword search algorithm for vector quantization [J].IEE Processings-Vision,Image and Signal Processing,1994,141(3):143-148.
  • 8[14]Ghosh D,Shivaprasad A P.Fast codeword search algorithm for realtime codebonk generation in adaptive VQ [J].IEE Processings-Vision,Image and Signal Processing,1994,144(5) :278-284.
  • 9[15]Baek S J,Jeon B K,Sung K M.A fast encoding algorithm for vector quantization [J].IEEE Signal Processing Letters,1997,4 (12):325-327.
  • 10[16]Xu R S,Lu Z M,Xu X M,Zhang W D.An efficient fast encoding algorithm for vector quantization [J] .Journal of Shanghai JiaoTong University,2000,E-5(2) :23-27.

共引文献2

同被引文献67

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部