摘要
目前大多数生产调度的研究往往聚焦于经典调度问题的优化算法而忽略了车间中大量存在的不确定性,因而难以应用于实际车间调度。采用随机变量来描述真实车间中存在的一些不确定信息,在基于不确定规划理论的基础上建立了相应的不确定性调度模型,并研究了解决此类问题的混合智能算法。开发了混合智能优化原型系统,并结合仿真工具对该调度模型和混合智能算法进行了验证。
Most present researches on production scheduling concentrate on the optimization algorithms for classical scheduling problems without considering the uncertainties typically existing in the actual job shops, which leads to the difficulty to apply the algorithms in practical shop scheduling. Here, the stochastic variables were used to describe the uncertain information existing in the actual job shops. The corresponding model for scheduling with uncertainty was built on the basis of uncertain programming theory. A hybrid intelligent algorithm for this kind of problem was proposed, and a prototype system of hybrid intelligent optimization was developed. Simulation study was carried out for verifying the proposed scheduling model as well as the hybrid intelligent algorithm.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2007年第16期1939-1942,共4页
China Mechanical Engineering
基金
国家重点基础研究发展计划资助项目(2005CB724100)
国家自然科学基金资助项目(50675082)
关键词
作业车间调度
随机规划
不确定性
优化
job-shop scheduling
stochastic programming
uncertainty
optimization