期刊文献+

准连续介质方法及其应用 被引量:10

QUASICONTINUUM METHOD AND ITS APPLICATIONS
下载PDF
导出
摘要 介绍原子和连续介质耦合的多尺度模拟中的一个重要方法——准连续介质方法。阐述与该方法相关的原子模拟方法和有限元方法,针对在原子区/连续介质区耦合时出现的匹配问题,讨论在非局部原子区和局部的连续区过渡中交接面的处理,即在两种区域采用不同的权重计算系统的能量。对于模拟过程中材料微观变形不断变化的情况,结合自适应网格技术,确保在需要时保持原子区的全部细节,而在连续介质区则相对粗化。最后,介绍准连续介质方法在晶界变形与断裂、纳米压痕和位错相互作用等方面的一些应用和发展,并对该方法面临的问题和发展趋势做了展望。 One of the significant methods of multi-scale computer simulation named quasicontinuum method which is a mixed atomistic-continuum formulation is reviewed. The computational modeling related to atomistic/continuum coupling is introduced on the energetics of atomistic and continuum concepts and finite element methods. The coupled method with the disposal of the interface between the non-local field and the local field is discussed, which is to adopt different weight factors to calculate the energy of the system in the two fields. Automatic mesh adaption is combined to ensure that full atomistic detail is retained in regions of the problem where it is required while continuum assumptions reduce the computational demand elsewhere. Recent advances and some applications of grain boundary deformation and fracture, nano-indentation and the interaction of dislocations are noted, and the further study and trends of this field are outlined.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第8期101-108,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(10372024 10576010)。
关键词 准连续介质方法 多尺度 局部区 非局部区 耦合 Quasicontinuum method Multiscale Local field Non-local field Coupling
  • 相关文献

参考文献26

  • 1TADMOR E B, ORTIZ M, PHILLIPS R. Quasi- continuum analysis of defects in solids[J]. Philos. Mag. A, 1996, 73 (6): 1529-1563.
  • 2CURTIN W A, MILLER R E. Atomistic/continuum coupling in computational material science[J]. Modelling Simul. Mater. Sci. Eng., 2003,11(3): R22-R68.
  • 3MILLER R E, TADMOR E B. The Quasicontinuum method: overview, applications and current directions [J]. Journal of Computer-Aided Materials Design, 2002, 9(3): 203-239.
  • 4RUDD R E, BROUGHTON J Q. Concurrent coupling of length scales in solid state systems[J]. Phys. Staus. Solid B, 2000, 217(1): 251-291.
  • 5KOHLHOFF S, GUMBSCH P, FISCHMEISTER H E Crack propagation in bcc crystals studied with a combined finite-element and atomistic model[J]. Philos. Mag. A,1991, 64(4): 851-878.
  • 6SHILKROT L E, MILLER R, CURTIN W A. Coupled atomistic and discrete dislocation plasticity[J]. Phys. Rev. Lett., 2002, 89(2): 025501-1-025501-4.
  • 7阎守胜.固体物理基础[M].北京:北京大学出版社,2001..
  • 8DAW M S, BASKES M I. Embedded-atom method: deri- vation and application to impurities, surfaces, and other defects in metals[J]. Phys. Rev. B, 1984, 29(12): 6443- 6453.
  • 9NORSKOV J K, LANG N D. Effective-medium theory of chemical binding: application to chemisorption [J]. Phys. Rev. B,1980, 21(6): 2131-2136.
  • 10STILLINGER F H, WEBER T A. Computer simulation of local order in condensed phases of silicon[J]. Phys. Rev. B, 1985, 31(8): 5262-5271.

共引文献3

同被引文献110

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部