期刊文献+

液体旁通复叠式制冷系统性能分析 被引量:7

PERFORMANCE OF CASCADE REFRIGERATION WITH LIQUID REFRIGERANT BY-PASS
下载PDF
导出
摘要 为调节应用于高低温恒温箱中的复叠式制冷系统的制冷量,提出液体旁通制冷系统。当旁通电磁阀关闭时,制冷系统处于最大负荷状态,而电磁阀开启后,通过蒸发器的制冷剂减少,制冷量减少。因此,可以根据低温下制冷量的要求,调节进入蒸发器的制冷剂流量,从而调节制冷量。根据有限时间热力学原理,对这种复叠式制冷系统建立数学模型,进行数值模拟,对数值解的分析,表明这种负荷调节方式是可行的。液体旁通复叠式制冷系统有效地降低了压缩机的排气温度,且不存在液击的危险,适合应用于高低温恒温箱中提供变负荷制冷量。对高低温恒温箱的性能测试表明,带有液体旁通的复叠式制冷系统能有效地减小系统在高温工况下的制冷量并节约能量。 To control refrigeration capacities of cascade refrigeration in high/low thermostat unit (HLTU), liquid refrigerant by-pass is introduced. When the by-pass magnetic valve is close, refrigeration system is at its maximal capacity conditions; When the magnetic valve is open, refrigerant through evaporator decreases, which leads to the refrigeration capacity dropping. Therefore, HLTU system can adjust refrigeration capacity and refrigerant mass flow rate in evaporator according to the different requirement of refrigeration capacity. A finite-time thermodynamic model is developed for the refrigeration system. And the simulation results demonstrate that this capacity modulating technology is feasible. Liquid refrigerant by-pass reduces discharge temperature of compressor in the low temperature level refrigeration cycle effectively, avoids liquid slugging, and fits for HLTU to supply varying refrigeration capacity. In light of the experiment results, HLTU with liquid refrigerant by-pass can reduce refrigerating capacity and save energy when it is used at high external air temperature.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第8期192-197,共6页 Journal of Mechanical Engineering
关键词 液体旁通 复叠式制冷 制冷负荷调节 有限时间热力学 Liquid refrigerant by-pass Cascade refrigeration Refrigeration capacity modulation Finite-time thermodynamic
  • 相关文献

参考文献9

二级参考文献23

  • 1张雁.蓄冷空调系统动态仿真软件的开发研究[M].北京:清华大学,1998..
  • 2周谟仁.流体力学泵与风机[M].北京:中国建筑工业出版社,1986..
  • 3Van Houte U, Van den Bulck E. Modeling chiller performance using simulations equation-solving procedures [J]. International Journal of Refrigeration,1994,17(3):191-198.
  • 4Beyene A, Guven H, Jawdat Z, et al. Conventional chiller performances simulation and field data[J]. International Journal of Energy Research, 1994,18 (3) :391-399.
  • 5Browne M W, Bansal P K. Steady-state model of centrifugal liquid chillers [J]. International Journal of Refrigeration, 1998,21 (5): 343 - 358.
  • 6Fu Long, Ding Guoliang, Su Zujian, et al. Steadystate simulation of screw liquid chillers [J]. Applied Thermal Engineering,2002,22(15) :1731-1748.
  • 7Fu Long, Ding Guoliang, Zhang Chunlu. Dynamic simulation of air-to-water dual-mode heat pump with screw compressor[J]. Applied Thermal Engineering,2003,23(13): 1629-1645.
  • 8Zhang Chunlu, Ding Guoliang. Modified general equation for the design of capillary tubes[J]. ASME Journal of Fluids Engineering, 2001,123 (4): 914 -919.
  • 9O'Neal D L,Pterson K T,Anand N K.Effect of short-tube orifice size on the performance of an air source heat pump during the reverse-cycle defrost[J].Int J Refrig,1991,14(7):52-57.
  • 10Nutter D W,O'Neal D L,Payne W V.Impact of the suction line accumulator on the frost/defrost performance of an air-source heat pump with a scroll compressor[J].ASHRAE Transaction,1993,99(2):689-698.

共引文献58

同被引文献41

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部