期刊文献+

异种材料淬火过程的有限元模拟 被引量:1

FEM simulation of quenching process for dissimilar material welded using steel and titanium alloy
下载PDF
导出
摘要 钛合金扩散焊接轴承钢材料由于含有钒、铜、镍中间层,在淬火过程中容易从多层材料界面处开裂。因此利用纳米显微力学探针测量了材料的弹性模量,然后采用ANSYS有限元软件对淬火中钛合金焊接轴承钢材料进行了有限元(FEM)模拟,根据得到的温度场以及应力场分布,找出了容易诱发界面处产生裂纹的原因。模拟表明淬火初期由于整体材料发生收缩而引起整体热应力的增加,淬火后期由于轴承钢发生马氏体相变,轴承钢体积开始膨胀,组织应力相应增加,抵消了一部分热应力的值,最终部件的残余应力是这两种应力共同作用的结果。高的淬火温度,增加了淬火过程中试件内部的应力值,容易引起过渡层处产生微裂纹从而导致局部开裂,因此,合适的淬火温度应取在830-860℃范围内且尽可能取偏其下限。 The material of bearing steel bonded on titanium alloy included V, Cu, Ni transition layers, which produced easily cracking on transition layer during quenching process. The elastic modulus of the materials was measured by nano indenter Ⅱ , and then the quenching process for bearing steel bonded on titanium alloy surface was simulated by FEM using ANSYS software. Based on the temperature and stress fields of integrated samples, which were obtained by simulation, the main reason of producing fracture on transition layers were found. Because integrated samples contract as it cooled during initial quenching process, the heat stress starts to increase. Subsequently, the martensitic transformation in bearing steel led to sample's cubic expansion, and the structure stress starts to increase and counteracts some heat stress, both of which induces the final residual stress distribution. The higher quenching temperature increases the internal stress of sample, which is easy to generate cracks, and then fracture occurs on transition layer, so the proper quenching temperature is in the range of 830 - 860℃, and the lower temperature is better.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2007年第4期139-143,共5页 Transactions of Materials and Heat Treatment
关键词 钛合金 轴承钢 ANSYS 有限元(FEM) titanium alloy bearing steel ANSYS finite element(FEM)
  • 相关文献

参考文献7

  • 1张伟民,潘健生,钱初钧,李勇军,张戈.热处理数值模拟与远程服务[J].材料热处理学报,2001,22(1):60-66. 被引量:10
  • 2李延增,闫牧夫.TC4薄壁件热处理过程形状尺寸变化数值预报[J].材料科学与工艺,2005,13(1):21-24. 被引量:3
  • 3Gür C H,Tekkaya A E.Numerical investigation of non-homogeneous plastic deformation in quenching process[J].Material Science and Engineering,2001,319:164-169.
  • 4Pan J,Li Y,Li D.The application of computer simulation in heat-treatment process of a large-scale bearing roller[J].Journal of Material Processing Technology,2002,122:241-248.
  • 5Liu C C,Xu X J,Z Liu.A FEM modeling of quenching and tempering and its application in industrial engineering[J].Finite Elements in Analysis and Design,2003,39:1053-1070.
  • 6姚新,顾剑锋,胡明娟,张伟民.空心圆柱体GCr15钢淬火过程的计算机模拟[J].材料热处理学报,2003,24(1):78-81. 被引量:19
  • 7刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社,2005.

二级参考文献14

  • 1邹壮辉,高守义,张立文,林立.淬冷热应力场研究和应用进展[J].金属热处理学报,1993,14(3):1-8. 被引量:12
  • 2原少勤,程军.淬火过程中工件温度场和应力场的数值模拟[J].华北工学院学报,1995,16(3):233-238. 被引量:2
  • 3徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1981.332.
  • 4颜鸣皋.工程材料实用手册3[M].北京:中国标准出版社,1989..
  • 5ELKATATNY I, MORSI Y, BLICBLAU A S, et al. Numerical analysis and experimental validation of high pressure quenching [ J]. International J of Thermal Sciences, 2003, 42:417-423.
  • 6JU D Y, LIU C C, INOUE T. Numerical modeling and simulation of carburizing and nitrided quenching process[J]. J of Materials Processing Technology, 2003, 143- 144: 880 - 885.
  • 7刘高琠.温度场的数值模拟[M].重庆:重庆大学出版社,1996..
  • 8DENIS S, GAUTIER E, SIMON A. Stress phase transformation interactions basic principles, modeling and calculation of internal stress [ J ]. Materials Science and Technology, 1985, 1 (10): 805.
  • 9才金正,高德福,崔光洙.TC4钛合金热镦加热过程中应力场的分析研究[J].塑性工程学报,1997,4(2):74-77. 被引量:2
  • 10李宇,潘健生,徐州,李志强.渗碳浓度场的有限元法计算机模拟[J].热加工工艺,1999,28(1):5-7. 被引量:1

共引文献29

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部