期刊文献+

具饱和传染率的脉冲免疫接种SIRS模型 被引量:25

THE SIRS EPIDEMIC MODEL WITH SATURATED CONTACT RATE AND PULSE VACCINATION
原文传递
导出
摘要 研究了具饱和传染率的脉冲免疫接种SIRS模型的一致持续生存和周期解,得到了无病周期解全局渐近稳定的充分条件和系统一致持续生存的充分条件,并应用分支理论得到了正周期解存在的分支参数. In this paper, uniform persistence and periodic solution of the SIRS epidemic model with saturated contact rate and pulse vaccination are discussed. Sufficient conditions for global asymptotic stability of the infection-free periodic solution and uniform persistence of this model are obtained. Using bifurcation theory the bifurcation parameter for existence of the positive periodic solution is given.
出处 《系统科学与数学》 CSCD 北大核心 2007年第4期563-572,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10471117 10526015) 广西科技厅自然基金(0728249) 广西教育厅科研项目(200607LX138) 玉林师范学院重点课题(2007YJZD08)资助
关键词 脉冲免疫接种 SIRS模型 一致持续生存 周期解. Pulse vaccination, SIRS model, uniform persistence, periodic solution.
  • 相关文献

参考文献8

  • 1Roberts M G and Kao R R. The dynamics of an infectious disease in a population with birth pules. Math. Biosci., 1998, 149: 23-36.
  • 2Stone L, Shulgin B and Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Math. Computer Modeling, 2000, 31: 207-215.
  • 3d'Onofrio A. Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures. Math. Comput. Modelling, 2002, 36: 473-489.
  • 4d'Onofrio A. Stability properties of pulse vaccination strategy in SEIR epidemic model. Math. Biosci., 2002, 179: 57-72.
  • 5靳祯,马知恩.具有连续和脉冲预防接种的SIRS传染病模型[J].华北工学院学报,2003,24(4):235-243. 被引量:47
  • 6Bainov D D and Simeonov P S. Impulsive Differential Equations: Periodic Solutions and Applications. New York, John Wiley & Sons, 1993.
  • 7Lakshmikantham V, Bainov D D and Simeonov P S. Theory of Impulsive Differential Equations. Singapore, World Scientific, 1989.
  • 8Lakmeche A and Arino O. Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn. Cont. Discr. Impul. Syst., 2000, 7: 265-287.

二级参考文献14

  • 1布鲁克史密斯 皮特著 马永波译.未来的灾难: 瘟疫复活与人类生存之战[M].海口: 海南出版社,1999..
  • 2布鲁克史密斯·皮特著 马永波译.未来的灾难:瘟疫复活与人类生存之战[M].海口:海南出版社,1999..
  • 3Lajmanovich A, Yorke J A.A deterministic model for gonorrhea in a nonhomogeneous population [J]. Math.Biosci. , 1976, 28: 221--236.
  • 4Hethcote H W, Van Ark J W.Epidemiological models with heterogeneous populations:.Proportionate mixing, parameter estimation and immunization programs[J].Math. Biosci. , 1987, 84: 85--118.
  • 5Roberts M G, Kao R R.The dynamics of an infectious disease in a population with birth pules[J].Mathematical Biosciences, 1998, 149: 23--36.
  • 6Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model[J]. Bulletin of Mathematical Biology, 1998, 60: 1123--1148.
  • 7Stone L, Shulgin B, Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model[J].Math. Computer Modeling, 2000, 31: 207--215.
  • 8Busenberg S, Van Driessehe P. Analysis of adisease transimission model in a population with varying size[J]. J.Math. Biol. , 1990, 28: 257--270.
  • 9Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. World Scientific,1989.
  • 10Drumi Bainov, Pavel Simeonov. Impulsive Differential Equations: Periodic Solutions and Applications[M]. Longman Seientificand Technical, 1993.

共引文献46

同被引文献153

引证文献25

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部