期刊文献+

一类有迁移的SIS流行病模型 被引量:2

AN SIS EPIDEMIC MODEL WITH POPULATION DISPERSAL
原文传递
导出
摘要 研究一类种群有迁移的流行病模型,得到了这类模型的基本再生数R_0,证明了R_0<1无病平衡点是局部渐近稳定的,而当R_0>1时无病平衡点是不稳定的.进一步讨论了疾病持续存在与无病平衡点和地方病平衡点全局稳定的条件. An epidemic model with population dispersal is studied. The basic reproduction number R0 is obtained for the disease. It is shown that the disease-free equilibrium is locally asymptotically stable if R0 〈 1 and is unstable if R0 〉 1. Furthermore, conditions for the uniform persistence of disease and conditions for global stability of the disease-free equilibrium and the endemic equilibrium are obtained by Liapunov method and by analyzing the property of flow on the boundary, respectively.
出处 《系统科学与数学》 CSCD 北大核心 2007年第4期587-596,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10571143) 重庆市教育委员会科学技术研究资助项目
关键词 传染病模型 种群迁移 疾病消失 地方病. Epidemic model, population dispersal, disappearance of disease, endemic.
  • 相关文献

参考文献12

  • 1Cooke K, Van den Driessche P, Zou X. Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol., 1999, 39: 332-352.
  • 2Azmy S Ackleh, Linda J S Allen. Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size. J. Math. Biol., 2003, 47: 153-168.
  • 3娄洁,马知恩.一类有被动免疫的流行病模型研究[J].数学物理学报(A辑),2003,23(3):357-368. 被引量:13
  • 4Zhao Xiaoqiang and Zou Xingfu. Threshold dynamics in a delayed SIS epidemic model. J. Math. Anal. Appl., 2001, 257: 282-291.
  • 5Andrei Korobeinikov and Philip K Maini. A liapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. J. Math. Biosci. Engi., 2004, 1: 57-60.
  • 6韩丽涛,原三领,马知恩.两种群相互竞争的自治类型的SIS传染病模型[J].西安交通大学学报,2001,35(8):864-867. 被引量:16
  • 7陈兰荪,王东达,杨启昌.阶段结构种群动力学模型[J].北华大学学报(自然科学版),2000,1(3X):185-191. 被引量:43
  • 8王辉,胡志兴,马知恩.非线性接触率和种群动力学对SI传染病模型的影响[J].生物数学学报,1997,12(S1):434-438. 被引量:7
  • 9Wang Wendi and G Mulone. Threshold of disease transmission in a patch environment. J. Math. Anal. Appl., 2003, 285: 321-335.
  • 10Wang Wendi. Population Dispersal and Disease Spread. J. Disc. Cont. Dyna. Syst.-Seri. B, 2004, 4 : 797-804.

二级参考文献17

  • 1胡志兴,马知恩.一个具有时滞和非线性接触率的传染病模型[J].高校应用数学学报(A辑),1993,8(3):255-261. 被引量:13
  • 2胡志兴.关于一个超越方程的稳定性[J].延安大学学报(自然科学版),1994,13(1):16-25. 被引量:3
  • 3胡志兴,王辉.一个传染病模型的传染平衡位置的稳定性[J].延安大学学报(自然科学版),1995,14(1):12-17. 被引量:3
  • 4Capasso V. Mathematical Structures of Epidemic Systems. Berlin: Springer-Verlay, 1993. Vol. 97 of lecture notes in Biomathematics.
  • 5Chen L, Chen J. Nonlinear Dynamical Systems of Biology. Beijing: Academic Press, 1993.
  • 6Anderson R M, May R M. Population biology of infectious diseases I. Nature, 1979,180:361-367.
  • 7Li M Y, Graef j R, Wang L, Karsai J. Global dynamics of an SEIR model with varying population size. Math Biosci, 1999,160:191-213.
  • 8Hethcote H W. The Mathematics of Infectious Disease. SIAM REVIEW 2000, 42(4):599-653.
  • 9Gao L Q, Hethcote H W. Disease transmission models with density-dependent demographics. J Math Biol, 1992,30:717-731.
  • 10Hethcote H W, Stech H W, P Van Den Driessche. Periodicity and stability in epidemic models. In: Busenberg S N, Cooke K L, edt. Differential Equations and Applications in Ecology, Epidemic and Population Problems. New York: Academic Press, 1981. 65-82.

共引文献73

同被引文献18

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2宋伊琳,崔景安.具有年龄结构的SIS模型的研究[J].南京师大学报(自然科学版),2006,29(2):21-25. 被引量:1
  • 3WANG Kai-fa, WANG Wen-di, LIU Xian-ning. Global Stability in a Viral Infection Model with Lytic and Nonlytic Immune Responses [J]. Computers and Mathematical with Applications, 2006, 51(9--10): 1594--1610.
  • 4WANG Kai-fa, WANG Wen-di, LIU Xian-ning. Viral Infection Model with Periodic Lytic Immune Response [J]. Chaos Solitons and Fractals, 2006, 28(1): 90--99.
  • 5WANG Kai-fa, WANG Wen-di, PANG Hai-yan, et al. Complex Dynamic Behavior in a Viral Model with Delayed ImmuneResponse [J]. PhysicaD, 2007, 226(2): 197--208.
  • 6WANG Kai fa, WANG Wen-di. Propagation of HBV with Spatial Dependence [J]. Mathematical Biosciences, 2007, 210(1):78--95.
  • 7SONG Xin-yu, AVIDAN U. Neumann, Global Stability and Periodic Solution of the Viral Dynamics [J]. J Math Anal Appl, 2007, 329(1): 281--297.
  • 8晏谢飞,邹云.最优阻隔控制在一类SIRS多组群传染病中的应用[J].南京理工大学学报,2007,31(4):426-429. 被引量:3
  • 9Qiu z P. Dynamical behavior of a vector-host epidemic model with demographic structure [ J ]. Comput MathAppl,2008 ,56 :3118-3129.
  • 10Feng Z L, Velasco-Hem~ndez J X. Competitive exclusion in a vector-host model for the dengue fever [ J ]. J Math Biol, 1997,35:523-544.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部