期刊文献+

代数微分方程组允许解的值分布 被引量:5

THE VALUE DISTRIBUTION OF ADMISSIBLE SOLUTIONS OF SYSTEMS OF ALGEBRAIC DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 利用亚纯函数值分布理论和方法,研究了代数微分方程组允许解的值分布问题,得到了一些有趣的结果. In this paper, using the techniques and some basic results from the value distribution theory of meromorphic functions, we investigate the problem of the value distribution of admissible solutions of a system of complex algebraic differential equations and obtain some interesting results.
作者 高凌云
机构地区 暨南大学数学系
出处 《系统科学与数学》 CSCD 北大核心 2007年第4期629-632,共4页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10471065) 广东省自然科学基金(04010474)资助项目
关键词 值分布 微分方程组 允许解. Value distribution, algebraic differential equations, admissible solution
  • 相关文献

参考文献9

  • 1Tu Zhenhan and Xiao Xiuzhi. On the meromorphic solutions of system of higher-order algebraic differential equations. Complex Variables, 1990, 15: 197-209.
  • 2宋述刚.复微分方程组的亚纯解[J].数学学报(中文版),1991,34(6):779-784. 被引量:13
  • 3Li Kamshun and Chan Waileung. Meromorphic solutions of higher order system of algebraic differential equations. Math. Scand., 1992, 71: 105-121.
  • 4Gao Lingyun. On m-admissible components of solutions. Complex Variables, 1998, 35(4): 297-306.
  • 5高凌云.关于两类复微分方程组的允许解[J].数学学报(中文版),2000,43(1):149-156. 被引量:23
  • 6高凌云.具有允许解的代数微分方程组的形式[J].系统科学与数学,2004,24(1):96-101. 被引量:18
  • 7Ishizaki K and Yanagihara N. On admissible solutions of algebraic differential equations. Funk. Ekvacioj, 1995, 38(3): 433-442.
  • 8Steinmetz N. Meromorphic Lousungen der Differentialgleichungen Q(z, w) (d^2w/dz^2)^2 = P(z,w)(dw/dz)^2. Complex Variables, 1988, 10: 31-41.
  • 9Mokhonko A Z and Mokhonko V D. Estimates for the Nevanlinna characteristic of some classes of meromorphic functions and their applications to differential equations. Sib. Math. J., 1974, 15: 921-934.

二级参考文献14

  • 1Hayman W K. Meromorphic functions. Oxford: Oxford University Press,1964.
  • 2Todu N. On the conjecture of Guckstutter und Luine concerning the differential equution (w')^n =^mΣj=0 αj(z)W^j. Kodai Math. J., 1983, 6: 238-249.
  • 3Guckstutter F und Luine I. Zur Theorie der gewohnlichen differentialgleichungen im komplexen.Ann. Polon. Math., 1980, 38: 259-287.
  • 4Ozuwu M. On the conjecture of Guckstutter und Luine. Kodai Math. J., 1983, 6: 80-87.
  • 5何育赞,Contemporary Math,1983年,25卷,51页
  • 6李鉴舜,数学杂志,1983年,3卷,2期,175页
  • 7何育赞,中国科学.A,1983年,6期,514页
  • 8李鉴舜,数学杂志,1982年,2卷,1期,93页
  • 9吴桂荣,福建师范大学学报,1992年,8卷,1期,16页
  • 10朱述刚,数学学报,1991年,34卷,6期,779页

共引文献35

同被引文献26

  • 1Toda N.On the conjecture of gackstatter and laine concerning the differential equation (w')^n = ∑j=1^mai(z)w^j[J]. godai Math.J.,1983,6(2):238-249.
  • 2Laine I. Nevanlinna Theory and Compiex Differential Equation [M].Berlin:Walter de Gruyter, 1993.
  • 3Korhonen R.A new clunie type theorem for difference polynomials[J].J.Difference Equ.Appl., 2011, 17(3):387-400.
  • 4Hille E.Ordinary Differential Equations in the Complex Domain[M].New York:Wileyinterscience, 1976.
  • 5TODA N.On the conjecture of gackstatter and laine concerning the differential equation(w')^n=∑i=0^m ai(z)w^i[J].Kodai Math J,1983,6(2):238-249.
  • 6LAINE I,Nevanlinna theory and complex differential equation[M],Berlin:Walter de Gruyter,1993:18-49.
  • 7KORHONEN R.A new clunie type theorem for difference polynomials[J].J difference Equ Appl,2011,17(3):387-400.
  • 8宋述刚,舒皇伟.代数微分方程组的可允许解[J].数学杂志,2008,28(6):685-688. 被引量:7
  • 9高凌云.复微分方程组的m分量-可允许解[J].数学年刊(A辑),1997,1(2):149-154. 被引量:5
  • 10高凌云.Malmquist型复差分方程组[J].数学学报(中文版),2012,55(2):293-300. 被引量:26

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部