期刊文献+

应用具有手征流关联函数的光锥求和规则计算B(B_c)→Dl■过程的形状因子(英文)

Form Factors for B(B_c)→DI■ in Light-Cone Sum Rules with Chiral Current Correlator
原文传递
导出
摘要 在QCD光锥求和规则(LCSR)框架内应用具有手征流关联函数计算B(B_c)→Dl■衰变过程的弱形状因子.所获得的形状因子的表达式仅依赖于D介子的主导级分布振幅(DA).应用了三类D介子的分布振幅计算了形状因子F_(B→D)(0)和F_(B_c→D)(0).在速度迁移1.14<y<1.59的区域内使在光锥x^2=0附近算符乘积展开(OPE)得以有效的情况下所计算的形状因子行为在误差范围内与B→Dl■过程实验数据相一致.在大反冲区域1.35<y<1.59获得的形状因子F_(B→D)(0)是与微扰QCD(pQCD)结果相一致的.所以本文的计算在联接格点QCD,重夸克对称性和pQCD之间起桥梁作用,有助于进一步对B→Dl■跃迁过程的理解.计算使用了在端点具有指数压低的分布振幅行为,对F_(B_c→D)(0)的预言与其他方法获得的结果是可比的,有利于具有库仑修正的三点求和规则(3PSR)方法所得的结果. In this paper we calculate the weak form factors of the decays B(Bc) → Dlv^- by using the chiral current correlator within the framework of the QCD light-cone sum rules (LCSR). The expressions of the form factors only depend on the leading twist distribution amplitude (DA) of the D meson. Three models of the D- meson distribution amplitude are employed and the calculated form factors,FB→D (0) and FBC→D (0) are given. In the velocity transfer region 1.14 〈 y 〈 1.59, which renders the Operator Product Expansion (OPE) near light-cone x^2 = 0 to go effectively, the yielding behavior of form factor is in agreement with that extracted from the data on B → Dlv^-, within the error. In the large recoil region 1.35 〈 y 〈 1.59, the form factor FB→D(0) is observed consistent with that of perturbative QCD (pQCD). The presented calculation can play a bridge role connecting those from the lattice QCD, heavy quark symmetry and pQCD to have an all-around understanding of B→ Dlv^- transitions. Our prediction for FB→D(0), by using the D-meson distribution amplitude with the exponential suppression at the end points, is compatible with other approaches, and favors the three-points sum rules (3PSR) approach with the Coulumb corrections.
作者 黄涛
出处 《高能物理与核物理》 CSCD 北大核心 2007年第9期849-856,共8页 High Energy Physics and Nuclear Physics
关键词 形状因子 光锥求和规则 量子色动力学(QCD) form factor, light-cone sum rules, quantum chromodynamics (QCD)
  • 相关文献

参考文献32

  • 1Kurimoto T,LI H N,Sanda A I.Phys.Rev.,2002,D65:014007
  • 2LU C D,YANG M Z.Euro.Phys.J.,2003,C28:515
  • 3HUANG T,LI Z H,WU X Y.Phys.Rev.,2001,D63:094991
  • 4Bowler K C et al.Phys.Lett.,2000,B486:111
  • 5HUANG T,WU X G.Phys.Rev.,2005,D71:034018
  • 6Abe F et al(CDF Collaboration).Phys.Rev.,1998,D58:112004
  • 7Abe F et al(CDF Collaboration).Phys.Rev.Lett.,1998,81:2432
  • 8Acosta D et al(CDF Collaboration).hep-ex/0505076
  • 9Corcoran M D(CDF Collaboration).hep-ex/0506061
  • 10Lusignoli M,Masetti M.Z.Phys.,1991,C51:549

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部