期刊文献+

分割虚拟人切片数据的SVM多类分割方法 被引量:1

SVM multi-class segmentation method for slice data of virtual human
下载PDF
导出
摘要 针对虚拟人切片数据量大、解剖结构复杂等特点,对分割虚拟人切片图像的基于二叉树SVM多类分割方法进行研究。基于二叉树的SVM多类分割方法较其他SVM多分类方法更符合人们分割虚拟人切片图像的习惯,而且能获得较高的分割性能和质量。通过对该方法的性能分析,为组织高效的二叉树SVM多类分割方法提供了理论支持。 This paper performed a study of SVM mutli-class segmentation method based on binary tree to segment the huge, complex slice data of virtual human. The mentioned multi-class method could get a better performance and result. It is more suitable for the human behavior to segment the slices. The analysis of performance gave a theoretical base to construct a more effective multi-classifier based on binary tree for segmentation the slice images of the virtual human.
出处 《计算机应用研究》 CSCD 北大核心 2007年第8期223-225,共3页 Application Research of Computers
基金 中国教育科研网格计划ChinaGrid图像处理网格应用平台建设专题资助项目(CG2003-GA00102)
关键词 数字虚拟人 支持向量机 多分类 图像分割 digital virtual human support vector machines (SVM) mutli-classification image segmentation
  • 相关文献

参考文献7

二级参考文献51

  • 1屈颖歌,周涛,王平安,夏德深.基于支持向量机的核磁共振左心室图像自动检测与分割[J].武汉大学学报(理学版),2003,49(6):769-774. 被引量:5
  • 2Knerr S, Personnaz L, Dreyfus G.Single-layer learning revisited: A stepwise procedure for building and training a neural network[C].In:J Fogelman ed. Neurocomputing: Algorithms, Architectures and Applications,New York: Springer-Verlag, 1990.
  • 3Bottou L,Cortes C,Denker J et al. Comparison of classifier methods:A case study in handwritten digit recognition[C].In:Proc of the International Conference on Pattern Recognition,1994:77~87.
  • 4Platt J,Cristianini N,Shawe-Taylor J.Large margin DAG's for multiclass classification[C].In:Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2000; 1 (12): 547~553.
  • 5Sungmoon C,Sang H O,Soo-Young L.Support Vector Machines with Binary Tree Architecture for Multi-Class Classification[J].Neural Information Processing-Letters and Reviews, 2004; 2 (3): 47~51.
  • 6Michie D ,Spiegelhalter D ,Taylor C.Machine Learning ,Neural and Statistical Classification[DB].http://www.liacc.up.pt/ML/statlog/datasets. html.
  • 7Bottou L, Cortes C, Denker J. Comparison of classifier methods:a case study in handwriting digit recognition [ A]. Preceedings of the 12th IAPR International Conference on Pattern Recognition [ C ]. Jerusalem: IEEE, 1994.77 ~ 82.
  • 8Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification [ A ]. Advances in Neural Information Processing Systems [C]. 2000.547 -553.
  • 9Vapnik V. Statistical Learning Theory [ M]. New York:Wiley,1998.
  • 10Crammer K , Singer Y. On the lesrnability and design of output codes for multiclass problems [A]. Proceedings of the Thirteenth Annual Conference on Computational Learning Theory [ C ]. SanFransisco:Morgan Kanfmann, 2000.35 ~46.

共引文献2471

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部