摘要
针对虚拟人切片数据量大、解剖结构复杂等特点,对分割虚拟人切片图像的基于二叉树SVM多类分割方法进行研究。基于二叉树的SVM多类分割方法较其他SVM多分类方法更符合人们分割虚拟人切片图像的习惯,而且能获得较高的分割性能和质量。通过对该方法的性能分析,为组织高效的二叉树SVM多类分割方法提供了理论支持。
This paper performed a study of SVM mutli-class segmentation method based on binary tree to segment the huge, complex slice data of virtual human. The mentioned multi-class method could get a better performance and result. It is more suitable for the human behavior to segment the slices. The analysis of performance gave a theoretical base to construct a more effective multi-classifier based on binary tree for segmentation the slice images of the virtual human.
出处
《计算机应用研究》
CSCD
北大核心
2007年第8期223-225,共3页
Application Research of Computers
基金
中国教育科研网格计划ChinaGrid图像处理网格应用平台建设专题资助项目(CG2003-GA00102)
关键词
数字虚拟人
支持向量机
多分类
图像分割
digital virtual human
support vector machines (SVM)
mutli-classification
image segmentation