期刊文献+

概率神经网络方法在岩性识别中的应用 被引量:23

The Probability Neural Networks for Lithology Identification
下载PDF
导出
摘要 本文研究利用概率神经网络方法进行测井资料的岩性识别;建立了测井解释的岩性识别模型,并利用该模型对测试样本进行预测,预测结果与实际测量结果相比具有较好的一致性,其计算量小且预测精度与收敛速度较BP神经网络模型有了很大的提高;应用表明,概率神经网络在岩性识别问题中有着一定的应用前景。 Lithologic identification from well-logging information based on PNN (Probability Neural Network) is studied in this paper. Lithologic identification model for well-logging interpretation is built and applied to predict the testing samples. The prediction result has higher consistency with the practical cases. The prediction precision and convergence rate is greatly improved compared to the traditional BP Neural Networks, and the computational complexity is also greatly reduced. The results obtained show that the PNN is very promising in lithologic identification.
出处 《微计算机信息》 北大核心 2007年第06S期288-289,257,共3页 Control & Automation
基金 国家自然科学基金资助项目(40572082)
关键词 概率神经网络 岩性识别 预测 识别 Probability Neural Networks, lithology identification, prediction and identification.
  • 相关文献

参考文献3

二级参考文献15

  • 1黄德双,保铮.STUDY OF RECOGNITION TECHNIQUE OF RADAR TARGET'S ONE-DIMENSIONAL IMAGES BASED ON RADIAL BASIS FUNCTION NETWORK[J].Journal of Electronics(China),1995,12(3):200-210. 被引量:1
  • 2吕孟军,郭琪,张家峰.航空发动机状态智能识别[J].微计算机信息,2005,21(2):60-61. 被引量:7
  • 3[1]Huang D S. Radial basis probabilistic neural networks: model and application[J]. Interational Journal of Pattern Recognition and Artificial Intelligence, 1999, 13(7):1083-1101.
  • 4[2]Huang D S. Application of generalized redial basis function networks to recognition of radar targets[J]. International Journal of Pattern Recognition and Aritificial Intelligence, 1999, 13(6):945-962.
  • 5[3]Parzen E. On estimation of a probability density function an mode[J]. Ann. Math. Stat.1962, 33:1065-1076.
  • 6[4]Zhao Wen-bo, Huang D S. The structure optimization of radial basis probabilistic neural networks based on genetic algorithms[C]. Proc. IJCNN'02, May,2002:1086-1091.
  • 7[5]Zhao Wen-bo,Huang D S. Appllication of recursive orthogonal least squares algorithm to the structure optimaization of radial basis probabilistic neural networks[C]. Proc. ICSP'02,Aug.2002:1211-1214.
  • 8[6]Huang De-shuang. The pattern recognition system theory based on the neural networks[M]. Beijing: Publishing House of Electronic Industry, 1996,119-137.
  • 9[7]Huang D S. The local minima free condition of feedforward neural networks for outer-supervised learning[J]. IEEE Trans on sysgtems, Man and Cybernetics,1998,28B(3):477-480.
  • 10[10]Bian Zhao-qi,Zhang Xue-gong.Pattern recognition[M]. Beijing:Tshinghua University Press, 2001,230-248.

共引文献25

同被引文献262

引证文献23

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部