期刊文献+

基于贝叶斯动态预测模型的商品推荐方法 被引量:3

An Approach to Commodity Recommendation Based on Bayesian Dynamic Forecasting Model
下载PDF
导出
摘要 传统的电子商务推荐系统虽然考虑到个性化的推荐,但不能很好的描述用户行为,使得个性化的推荐略显不足。本文提出基于贝叶斯动态预测的模型,并结合Agent技术,很好地建立了用户行为预测模型。该方法以用户历史数据为基础,并结合用户的实时行为建立用户行为预测模型。本文将此方法运用于商品推荐系统中,实验证明此方法能高效地为客户产生个性化的商品推荐集合,优于某些传统方法。  Although typical recommendation on E-commerce takes individual recommendation into consideration, it cannot describe users’ behavior very well so as to make individual recommendation to run poorly. This paper build a users’ behavior model based on Bayesian dynamic forecasting model with agent techniques, the model is built by learning from users’ history data and behaviors at present. This method is used in a commodity recommendation system, an experimental result demonstrates that this method can effectively generate an individual recommendation set of commodity, and it is better than some traditional methods.
作者 黄光球 魏芳
出处 《微计算机信息》 北大核心 2007年第05X期133-134,156,共3页 Control & Automation
基金 陕西自然科学基金项目(2005F38) 校基础研究基金项目(JC0616)
关键词 贝叶斯动态预测模型 用户行为预测模型 个性化商品推荐 Bayesian dynamic forecasting model,users’ behavior model,individual commodity recommendation
  • 相关文献

参考文献7

二级参考文献46

  • 1张利萍,李宏光.灰色神经网络预测算法在DMF回收过程中的应用[J].微计算机信息,2005,21(1):183-184. 被引量:27
  • 2王飞,王志良,赵积春,程宁.基于随机事件处理的情感建模研究[J].微计算机信息,2005,21(3):101-102. 被引量:6
  • 3杨威权 刘兰亭.多元统计分析[M].北京:高教出版社,1984.41.
  • 4董文泉.数量化理论及其应用[M].长春:吉林人民出版社,1987.53.
  • 5Bamshad Mobasher, Robert Cooley,Jaideep Srivastava. Automatic Personalization Based on Web Usage Mining.
  • 6Wu, Y.H., Chen, Y.C., Chen, A.L.P. Enabling personalized recommendation on the Web based on user interests and behaviors. In:Klas, W., ed, Proceedings of the 1 lth Intenlational Workshop on Research Issues in Data Engineering. Los Alamitos, CA: IEEE CS Press, 2001. 17-24.
  • 7Cooley,J,Srivastava.Data preparation formining world wide Web browsing patter[J].JournalofKnowledgeandInforma-tionSystems,1999.1(1):5-31
  • 8R.Cooley,B.Mobasher,J.Sfivastava.Web Mining:Information and Pattern Discovery on the World Wide Web [J],Proceedings of the IEEE Inaternational Cofference on Tools with Artifical Intelligence ,1997,11
  • 9C.Aggarwal,P.Yu. Data Mining Techniques for Personalization[J],IEEE Data Engineering Bulletin,23(1),2000,4
  • 10Paul Resnick,Hal R.Varian,Recommender Systems,Communications of the ACM,Mar.1997,Vol.40,No.3:56~58.

共引文献144

同被引文献26

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部