摘要
传统的电子商务推荐系统虽然考虑到个性化的推荐,但不能很好的描述用户行为,使得个性化的推荐略显不足。本文提出基于贝叶斯动态预测的模型,并结合Agent技术,很好地建立了用户行为预测模型。该方法以用户历史数据为基础,并结合用户的实时行为建立用户行为预测模型。本文将此方法运用于商品推荐系统中,实验证明此方法能高效地为客户产生个性化的商品推荐集合,优于某些传统方法。
Although typical recommendation on E-commerce takes individual recommendation into consideration, it cannot describe users’ behavior very well so as to make individual recommendation to run poorly. This paper build a users’ behavior model based on Bayesian dynamic forecasting model with agent techniques, the model is built by learning from users’ history data and behaviors at present. This method is used in a commodity recommendation system, an experimental result demonstrates that this method can effectively generate an individual recommendation set of commodity, and it is better than some traditional methods.
出处
《微计算机信息》
北大核心
2007年第05X期133-134,156,共3页
Control & Automation
基金
陕西自然科学基金项目(2005F38)
校基础研究基金项目(JC0616)
关键词
贝叶斯动态预测模型
用户行为预测模型
个性化商品推荐
Bayesian dynamic forecasting model,users’ behavior model,individual commodity recommendation