期刊文献+

一种求解内谐振条件下导体散射特性的有效方法 被引量:1

An Effective Approach to Scattering from Conducting Bodies at Interior Resonance
下载PDF
导出
摘要 众所周知,在内谐振条件下,用积分方程法分析导体的散射特性时,不论是电场积分方程还是磁场积分方程,所求得的解都是不唯一或者不稳定的。本文提出了一种新的方案,通过引入一个微小的复频率,并结合逼近理论求得导体表面的真实电流密度,从而得到正确的导体散射特性。此方法具有实现简单和概念清晰的优点。文中分别以无限长理想导体正方柱和两个理想导体球为例,并将计算结果与混合场积分方程法所得的结果进行比较,它们之间良好的一致性说明了本文所提方法的正确性和有效性。 As is well known, when the integral equation (IE) method is applied to analyze the scattering from conductors at interior resonances, either" E-field integral equations or H-field integral equations, the solutions are always nonunique or instable. A novel scheme is presented in the paper to deal with such problems. The method is developed to compute the true non-resonant current density of conductors by introducing a small complex frequency and by employing the approximation theory, which possesses the advantage of simplicity in implementation and clarify in concept. An infinite perfectly conducting square cylinder and two perfectly conducting spheres are taken as examples and the computed results are compared with those obtained by combined field integral equation (CFIE). The good agreement between them shows the correctness and effectiveness of the proposed method.
出处 《微波学报》 CSCD 北大核心 2007年第4期1-5,共5页 Journal of Microwaves
基金 国家自然科学基金资助项目(60432040) 江苏省自然科学基金资助项目(BK2002031)
关键词 电磁散射 积分方程 内谐振 矩量法 EM scattering Integral equation Internal resonance Method of moment
  • 相关文献

参考文献16

  • 1Rao S M,Wilton D R,Glisson A W.Electromagnetic scattering by surfaces of arbitrary shape.IEEE Trans Ant & Prop,1982,30(3):409-418.
  • 2华夷和,徐金平.电磁散射与辐射问题中的混合基函数矩量法[J].微波学报,2003,19(4):15-18. 被引量:7
  • 3Berg P M,Korkmaz E,Abubakar A.A constrained conjugate gradient method for solving the magnetic field boundary integral equation.IEEE Trans Ant & Prop,2003,51(6):1168-1175.
  • 4Rius J M,Ubeta E,Parron J.On the testing of the magnetic field integral equation with RWG basis functions in method of moments.IEEE Trans Ant & Prop,2001,49(11):1550-1553.
  • 5Mautz J R,Harrington R F.H-field,E-field,and combined field solutions for conducting bodies of revolution.A.E.U.,1978,32(4):157-164.
  • 6Yaghjian A D.Augmented electric-and magnetic-field integral equations.Radio Sci,1981,16(6):987-1001.
  • 7Mautz J R,Harrington R F.A combined-source formulation for radiation and scattering from a perfectly conducting body.IEEE Trans Ant & Prop,1979,27(4):445-454.
  • 8Al-Badwaihy K A,Yen J L.Extended boundary condition integral equations for perfectly conducting and dielectric bodies:formulation and uniqueness.IEEE Trans Ant & Prop,1975,23(7):546-551.
  • 9Toyoda I,Matsuhara M,Kumagai N.Extended integral equation formulation for scattering problems from a cylindrical scatterer.IEEE Trans Ant & Prop,1988,36(11):1580-1586.
  • 10Monzon J C,Damaskos N J.A scheme for eliminating internal resonances:the parasitic body technique.IEEE Trans Ant & Prop,1994,42(8):1089-1096.

二级参考文献13

  • 1[1]J H Richmond. A wire-grid model for scattering by conducting bodies. IEEE Trans. Ant. & Prop., 1966, 14(6) :782 ~786
  • 2[2]R F Harrington. Field Computation by Moment Methods.New York: McMillan, 1968
  • 3[3]S M Rao, D R Wilton, A W Glisson. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans.Ant. & Prop. ,1982,30(3): 409 ~418
  • 4[4]E H Newman, P Tulyatha. A aurface patch model for polygonal plates. IEEE Trans. Ant. & Prop., 1982, 30(4) :588 ~593
  • 5[5]Ronald Coifman, Vladimir Rokhlin, Stephen Greengard.The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas and Propagation Magazine, 1993,35(3) :7 ~ 12
  • 6[6]C C Lu, W C Chew. A muhilevel algorithm for solving boundary-value scattering. Micro. Opt. Tech. Lett.,1994,7(10) :466 ~470
  • 7[7]Blacker T D. Paving: a new approach to automated quadrilateral mesh generation. Int. J Numer. Mesh. Eng.,1991,32:811 ~ 847
  • 8[8]N C Albertsen, J E Hansen, N E Jensen. Computation of radiation from wire antennas on conducting bodies. IEEE Trans. Ant. & Prop. , 1974,22(2) :200 ~ 205
  • 9[9]Ibrahim Tekin, E H Newman. Method of moment solution for a wire attached to an arbitrary faceted surface. IEEE Trans. Ant. & Prop. , 1998,46(4) :559 ~ 562
  • 10[10]S U Hwu, D R Wilton. Electromagnetic Scattering and Radiation by Arbitrary Configurations of Conducting Bodies and Wires, San Diego State University, Tech.Rep. 87-17, May,1998

共引文献9

同被引文献12

  • 1Ron Choy, Alan Edelman. Parallel MATLAB: Doing it Right[J]. Proceedings of the IEEE, 2005, 93(2) : 331- 341.
  • 2Hahn Kim, Kepner J. and Kahn C. Parallel MATLAB for Extreme Virtual Memory[ C]. IEEE Users Group Conference, 2005. 381 - 387.
  • 3Quinn M. J. , Malishevsky A. , Seelam N. and Zhao Y. Preliminary results from a parallel MATLAB compiler [ C ]. IEEE Intermational Conference on Parallel and Distributed Processing, 1998. 81-87.
  • 4Milosavljevic I.Z. and Jabri M.A. Automatic array alignment in parallel Matlab scripts [ C ]. IEEE Intermational Conference On Parallel and Distributed Processing, 1999. 285 -289.
  • 5Manolakos E. S. , Galatopoullos D.G. and Funk, A.P. Distributed Matlab based signal and image processing using JavaPorts [ C ]. IEEE Intermational Conference on Acoustics, Speech, and Signal Processing, 2004. 217-220.
  • 6Travinin N., Hoffmann, H., Bond R., Chan H., Kepner J. and Wong E. pMapper: Automatic Mapping of Parallel Matlab Programs [ C ]. IEEE Users Group Conference, 2005. 254-261.
  • 7Judy Gardiner, John Nehrbass, et al. Enhancements to MadabMPI: Easier Compilation, Collective Communica- tion, and Profiling[ C]. IEEE HPCMP Users Group conference, 2006. 435-439.
  • 8Raghunathan S. Making a Supercomputer Do What You Want: High-Level Tools for Parallel Programming [ J ]. IEEE Computing in Science and Engineering, 2006,8 (5) : 70-80.
  • 9Cleve Moler. Why there isn't a parallel matlab [ M ]. Cteve's corner, Mathworks Newsletter, 1995.
  • 10Harrington R F. Field Computation by Moment Methods [ M]. Piscataway: IEEE Press , 1993.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部