摘要
随着信息技术的发展,人们采集数据的手段日益丰富与高明,由此积累的机械设备故障数据日益膨胀,而且高维数据也日益成为主流。如何从这些海量数据及高维特征中选出有用的数据进行有效的故障诊断成为一件困难的事情。计算机性能的日益更新和数据库技术的快速发展,使得数据挖掘这一融合多种分析手段,从大量数据中发现有用知识的方法应运而生,为上述问题的解决开辟了一条道路。本文就详细论述了应用数据挖掘技术进行机械设备故障诊断的全过程。
As information technology development, data collection method plenty and advisability, there are more and more data about machinery fault.Some are multidimensional.How to select useful data from so large data is a difficult thing.Now computer capability is updating and database technology is developing fleetly.As a result data mining technology appears.It includes many analysis methods and can find out useful knowledge from large data.This paper discusses the whole process about how to use data mining technology solve the problem of machinery fault diagnoses.
出处
《微计算机信息》
北大核心
2007年第19期208-209,171,共3页
Control & Automation
关键词
数据挖掘
机械设备
故障诊断
粗糙集
人工神经网络
决策树
Data Mining, Machinery, Fault Diagnosis, Rough Set, Artificial Neural Network, Decision Tree