期刊文献+

基于灰色关联分析的烧结矿碱度应用研究 被引量:1

Application Research on the Alkalinity of Sintering Process Based on Grey Relation Analysis
下载PDF
导出
摘要 在现代钢铁企业中,高炉原料的烧结过程是其中重要的生产工序。烧结矿碱度稳定性直接影响到烧结矿的质量和产量,但由于烧结生产过程非常复杂,很难用一组较为准确的数学模型进行描述。加之过程所具有的大时滞性和动态时变性,采取一些依赖于对象数学模型的传统控制理论和方法难以解决烧结矿碱度的波动问题。因此长期以来,烧结矿碱度的控制一直是钢铁企业中的一个难点。据此提出利用灰色关联分析和BP神经网络建立烧结矿碱度的预报模型。通过对现场实际数据进行仿真,表明该方法鲁棒性强,准确性高,泛化能力广,具有很强的实用性和推广价值。 In the modern steel enterprises,the sintering process of blast furnace material is one of the best important production process.The sintering production alkalinity has a direct effect on production and economic benefits of whole steel enterprise.Therefore almost every steel factory is equipped with many instruments and automatic control systems in its sintering plant for its producton process control.But the complexity of sintering production process makes difficult to be described by a set of mathematic models. Since this process often has large time delay and dynamic time -varilabilityit, is hard to perform control tasks of total sintering process by using conventional control models.Prediction models of in sintering process based on grey relation analysis and BP neural network is proposed to judge the trend of the alkalinity.The application result shows that the prediction with this method can achieve higher robust, better utility and expensive value.
作者 鲍雅萍 宋强
出处 《微计算机信息》 北大核心 2007年第20期227-228,89,共3页 Control & Automation
基金 河南省科学规划项目(2001DZH002 2006120001)资助
关键词 烧结矿碱度 BP神经网络算法 灰色关联分析 仿真 the alkalinity in sintering process, BP neural network, grey relation analysis, shnulation.
  • 相关文献

参考文献7

二级参考文献8

  • 1付凡 张宗麟.故障诊断的神经网络与专家系统方法[J].西北大学学报:自然科学版,2003,146:94-94.
  • 2GOMM J.Online Learning for Fault Classification Using an Adaptive Nemm-Fuz.zy Network[A].Proc of IFAC World Congress,1996.175-180.
  • 3从爽.面向MATLAB工具箱的神经网络理论与应用(第2版)[M].合肥:中国科学技术大学出版社,2003,5..
  • 4J Moody. Prediction Risk and Architecture Selection for Neural Networks[C].In:V Cherkassky,J Friedman,H Wechsler eds. From Statistics to Neural Networks:Thoery and Pattern Recognition Application,NATO ASI Series F,New York:Springer-Verlag, 1994:136,147-165.
  • 5S E Fahlman, C Lebiere.The Cascade-Correlation Learning Architecture[C].In:D S Tourezky ed.Advances in Neural Information Processing Systerm,San Mateo,CA:Morgan Kaufmann,1990-2002:524-532.
  • 6B Hassibi, D Stork,G Wolff. Optional Brain Surgeon and General Network Pruning[C].In:IEEE International Conference on Neural Networks,1993:293-299.
  • 7飞思科技产品研发中心.MatLab6.5辅助神经网络分析与设计[M].电子工业出版社,2004..
  • 8李洪,吴贻鼎.利用ART1网络进行故障诊断的方法研究[J].电力系统及其自动化学报,2003,15(3):23-27. 被引量:5

共引文献142

同被引文献10

  • 1张建华,周平,侯日立.飞机结构撞击损伤预测的现状及发展[J].空军工程大学学报(自然科学版),2004,5(5):5-8. 被引量:4
  • 2展全伟,郭伟国,李玉龙,马君峰.飞机加强蒙皮在12.7mm弹丸撞击下的变形与破坏[J].爆炸与冲击,2006,26(3):228-233. 被引量:21
  • 3黄晶,许希武.飞机壁板结构击穿的数值模拟[J].兵器材料科学与工程,2007,30(2):17-22. 被引量:3
  • 4张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Hill Scott A. Determination of an empirical model for the prediction of penetration hole diameter in thin plates from hypervelocity impact. Int J Impact Eng 2004, (30):303-321
  • 6Staley Timothy D, Baker John R. Finite Element Simulation of Ballistic Impact in Survivability Studies[R]. AIAA 2004-2059
  • 7Bφrvik T, Hopperstad O S., Berstad T, Langseth M. Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses Part II: numerical simulations. Int J Impact Eng 2002, (27):37-64
  • 8侯满义.基于动力有限元和计算智能方法的飞机战伤研究.西安:空军工程大学.2007
  • 9郑旻仲,付祥炯.军用飞机结构高生存力设计指南.西安:飞机强度研究所,2000:72-74
  • 10周平,张建华,侯日立.射弹侵彻飞机LY-12CZ板材的实验研究[J].空军工程大学学报(自然科学版),2004,5(1):27-30. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部