摘要
利用φ-混合序列推广的Borel-Cantelli引理及一些收敛定理,在条件EXn=0,α>0,0<2α2nσ=2αE|Xn|2≤E2|Xn|<∞下,研究系数为φ-混合序列的随机Dirichlet级数∞∑n=0Xn(ω)e-λns的增长性,得出其增长级和非随机Dirichlet级数的增长级有类似的性质。
When EXn = 0, make it so that α 〉 0,0 〈 α^2σn^2 = α^2 E | Xn|^ 2≤ E^2 | Xn|〈 ∞. Under this condition, the growth of ∑n=0^∞ Xn(ω)e^-λn^5, a stochastic Dirichlet series whose coefficient is φ-mixed series, is studied by means of the extended Borel-Cantelli lemma and other limit theorems on mixed series. It is found that the stochastic Dirichlet series share common features with the non-random Dirichlet series in order of growth.
出处
《武汉科技大学学报》
CAS
2007年第4期438-440,共3页
Journal of Wuhan University of Science and Technology