期刊文献+

量子威尔逊圈首项的引力场激发

Gravitational field excitation from the first term of quantum Wilson loop
下载PDF
导出
摘要 在四维R引力场中,采用时空联络展式的线性和扩展表示的平方项,计算出引力场激发的曲率,这是由量子威尔逊圈通过两点联系格林函数给出的。同时以引力三维传播子对〈w〉的最低级校正(k4)和引力场自能计算的结果为基础,在精确的k4级条件下,能得到来自于〈w〉的〈w(2)〉首项激发的完整表达式。 In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculated the possible curvature excitation (order k^4) of gravitational field which is given by the first term of quantum Wilson loop (ω) through two-point Green's function of the connection. At the same time using the tree diagram propagators of gravitons, the lowest order (k^4) correction to (ω) is also calculated through the graviton self-energy in the term. Under the accuracy condition up to order k^4 , we have obtained a complete expression of the excitation contributed from the leading term (ω^(2) )of(ω).
出处 《武汉科技大学学报》 CAS 2007年第4期444-448,共5页 Journal of Wuhan University of Science and Technology
基金 湖北省教育厅重点科研资助项目(080043)
关键词 引力场激发 威尔逊圈首项 (ω^(2))的k^4级贡献 excitation of gravitational field first term of quantum Wilson loop contribution from order k^4 in (ω^(2))
  • 相关文献

参考文献6

  • 1G Modanese.Vacuum correlations in quantum gravity[J].Phys Lett B,1992,288:69-71.
  • 2G Modanese.Wilson loop in the 4-dimensional quantum-gravity[J].Physical Review D,1994,49:6 534-6 542.
  • 3YANGJi-Feng ZHOUJie WUChen.Numerical Evaluation of a Two-Loop Diagram in the Cutoff Regularization[J].Communications in Theoretical Physics,2003,40(4X):461-465. 被引量:1
  • 4K A Meissner.Black hole entropy in loop quantum gravity[J].GR-QC,2004,7:52.
  • 5F Markopoulou,L Smolin..Causal evolution of spin networks[J].GR-QC,1997,2:25.
  • 6Shao L,Shao D,Shao C G.The curvature excitation of quantum Wilson loop in(R+R2)-gravity[J].General Relativity and Gravitation,2003,35(4):527.

二级参考文献15

  • 1G 't Hooft and M Veltman, Nucl Phys B44 (1972) 189.
  • 2DB Kaplan, MJ Savage, and MB Wise, Nucl PhysB478 (1996) 629.
  • 3DB Kaplan, MJ Savage, and M:BWise, Phys Lett B424 (1998) 390.
  • 4T Mehen and IW Stewart, Phys Rev C59 (1999) 2365.
  • 5DR Phillips, SR Beane, and MC Birse, J Phys A32(1999) 3397.
  • 6Ji-Feng Yang, Commun Theor Phys (Beijing, China)3s (2002) 317.
  • 7Ji-Feng Yang and Jian-Hong Ruan, Phys Rev D65(2002) 125009.
  • 8R Jackiw, Phys Rev D9 (1974) 1686.
  • 9C Ford and DRT Jones, Phys Lett B274 (1992) 409.
  • 10S Coleman and E Weinberg, Phys Rev D7 (1973) 1888.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部