期刊文献+

基于SVDD的网络安全审计模型研究 被引量:3

A network security audit system based on support vector data description algorithm
下载PDF
导出
摘要 审计是入侵检测的基础,为入侵检测提供必要的分析数据.在传统的网络安全审计与入侵检测系统中,需要由人工来定义攻击特征以发现异常活动.但攻击特征数据难以获取,能够预知的往往只是正常用户正常使用的审计信息.提出并进一步分析了一种基于支持向量描述(SVDD)的安全审计模型,使用正常数据训练分类器,使偏离正常模式的活动都被认为是潜在的入侵.通过国际标准数据集MIT LPR的优化处理,只利用少量的训练样本,试验获得了对异常样本100%的检测率,而平均虚警率接近为0. Security audit, which is the basis of intrusion detection, provides the necessary data for intrusion detection analysis. In traditional security audit and intrusion detection system, the characteristics of an attack need to be defined by experts for the system to be able to successfully identify anomalous activities. Due to the difficulty in predicting attack data, in most cases administrators only get normal sequences of system calls. In this paper, a security audit system based on SVDD algorithm was designed to resolve the one-class problem in anomalous activity detection. All activities deviating from normal patterns were classified as potential intrusions. In experiments using the international standard data set MIT LPR, the oneclass classifier achieved a 100% detection rate and a zero false alarm rate for sequences of system calls based on a small training dataset. The proposed algorithms can be trained for anomalous activity detection simply by using normal samples and the algorithm also enables the security audit system to detect new types of anomalous behavior.
出处 《智能系统学报》 2007年第4期69-73,共5页 CAAI Transactions on Intelligent Systems
基金 江苏省自然科学基金资助项目(BK2005009) 中国博士后基金资助项目(2004036405) 江苏博士后基金资助项目(0401064B)
关键词 网络安全审计 入侵检测 支持向量描述 单类分类器 network security audit intrusion detection support vector data description, one-class classifier
  • 相关文献

参考文献12

  • 1[1]BISHOP M.Astandard audit trail format[A].Proceeding of the 18th National Information Systems Security Conference[C].Baltimore,1995.
  • 2[2]FORREST S,HOFMEYR S A.Computer immunology[J].Communications of the ACM,1997,40 (10):88 -96.
  • 3[3]WARRENDER C,FORREST S,PEARLMUTTER B.Detecting intrusion using system calls:alternative data models[EB/OL].http://www.cs.unm.edu/~ forrest/publications/ Oakland-with-cite.pdf,2000.
  • 4[4]FORREST S,HOFMEYR S A,LONGSTAFF T A.A sense of self for unix processes[A].IEEE Computer Society Press[C].Los Alamitos,1996.
  • 5[5]LEE W,STOLFO S J,MOK K W.A data mining framework for building intrusion detection models[A].Proc the 1999 IEEE Symposium on Security and Privacy[C].Berkely,USA,1999.
  • 6[6]HAYKIN S.Neural networks-a comprehensive foundation[M] 2nd.Beijing:Tsinghua University Press,2001.
  • 7[7]CRISTIANINI N,TAYLOR J S.An introduction to SVMs and other kernel-based learning methods[M].Cambridge Univ Press,2000.
  • 8[8]DAVID M J T.One-class classification[D].Dissertation:ICT Group Delft Netherland,1999.
  • 9[9]MANEVITZ L M,YOUSEF M.One-class SVMs for document classification[J].Journal of Machine Learning Research,2001(2):139-154.
  • 10[10]RTSCH G,SCHLKOPF B,MIKA S M,et al.SVM and boosting:one class[R].Berlin,Germany:GMD FIRST Kekuiést,2000.

同被引文献25

  • 1刘奕群,张敏,马少平.基于非内容信息的网络关键资源有效定位[J].智能系统学报,2007,2(1):45-52. 被引量:2
  • 2陈伏兵,杨静宇.分块PCA及其在人脸识别中的应用[J].计算机工程与设计,2007,28(8):1889-1892. 被引量:26
  • 3王文豪,严云洋.基于图像分块的LDA人脸识别[J].计算机工程与设计,2007,28(12):2889-2891. 被引量:6
  • 4Tax D J, Ypma A, Duin R W. Support vector data description applied to machine vibration[A]//Proceedings of 5th Annual Conference of the Advanced School for Computing and Imaging [C]. Heijen, NL, USA, 1999: 398-405
  • 5Vilaplana V, Marques F. Support vector data description based on PCA features for face detection[EB/OL], http://www.ee. bilkent. edu. tr/-signal/defevent/papers/cr1446. pdf
  • 6陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 7Lin Jian~(1,2) Peng Minjing~(1,2) 1.School of Business Administration,South China Univ.of Technology,Guangzhou 510641,F.R.China,2.Systems Science & Technology Inst,Wuyi Univ.,Jiangmen 529020,P.R.China.Interactive early warning technique based on SVDD[J].Journal of Systems Engineering and Electronics,2007,18(3):527-533. 被引量:6
  • 8MARKOS M, SAMEER S. Novelty detection: a review-part I: statistical approaches [ J ]. Signal Processing, 2003, 83 ( 12 ) :2481-2497.
  • 9JUSZCZAK P. Learning torecognize: a study on one-class classification and active learning [ D]. Delft: Delft University of Technology, 2006.
  • 10VAPNIK V N. The natual of statistical learning theory [ M ]. New York: Springer-Verlag, 1995.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部