期刊文献+

纳米时代的可制造性设计 被引量:2

Design for Manufacturability in Nanometer Era
下载PDF
导出
摘要 集成电路产业在遵循摩尔定律发展进入纳米时代后,制造工艺效应对芯片电学性能的影响越来越大,使得在设计的各个阶段都必须考虑可制造性因素。介绍了可制造性设计中的分辨率增强技术、工艺可变性,以及建立可制造性设计机制中的多方合作问题。 As IC industry develops into a nanometer era, effects of process technology on electrical performance of IC chips are becoming more and more serious. Factors of manufacturabillty have to be taken into account at every step during IC design. Issues concerning design for manufacturabillty (DFM) were dealt with, including resolution enhancement techniques (RET), process variation and the multilateral cooperation for establishing DFM mechanism.
出处 《微电子学》 CAS CSCD 北大核心 2007年第4期532-537,共6页 Microelectronics
关键词 集成电路 可制造性设计 分辨率增强 工艺可变性 光学邻近校正 化学机械抛光 Integrated circuit Design for manufacturability Resolution enhancement technique Process variation Optical proximity correction Chemlcal-mechanical polishing
  • 相关文献

参考文献12

  • 1史峥,沈珊瑚,严晓浪.来自亚100纳米可制造性的挑战[EB/OL].http://www2.ccw.com.cn/05/0543/b/0543b05_1.asp,2005-11-07.
  • 2GOERING R.可制造性设计(DFM)需要更清楚的定义[EB/OL].http://www.eettaiwan.com/ART_8800398598 _480102 _f614f745200512.htm,2005-12-02.
  • 3林宗辉,马光华.可制造性设计的发展趋势与方向[EB/OL].http://www.tsia.org.tw/Files/ShortMsg/2006511 1845.doc,2005-7.
  • 4王阳元,康晋锋.硅集成电路光刻技术的发展与挑战[J].Journal of Semiconductors,2002,23(3):225-237. 被引量:44
  • 5王国雄.成品率驱动的光刻校正技术[J].半导体技术,2005,30(6):10-13. 被引量:1
  • 6COTE M,HURAT P.Layout printability optimization using a silicon simulation methodology[C] // Int Symp Quality of Electronic Design.San Jose,CA,USA.2004:159-164.
  • 7王旸,蔡懿慈,石蕊,洪先龙.成品率驱动下基于模型的掩模版优化算法[J].Journal of Semiconductors,2004,25(3):351-357. 被引量:5
  • 8孤云.延续摩尔定律--光刻技术在现代CPU制造中的应用[EB/OL].http://www.pcshow.net/article/Articleinfo.js p?id=213236,2005-03-18.
  • 9MALINIAK D.影响可制造性设计(DFM)的因素剖析[EB/OL].http://www.ed-china.com/ART_8800011559_ 400012_500016_ OT.HTM,2006-01-04.
  • 10BONING D,NASSIF S.Models of process variations in device and interconnect,design of high-performance microprocessor circuits[M].New York:IEEE Press,2000:98-116.

二级参考文献40

  • 1[1]International Technology Roadmap for Semiconductors,1999 Edition
  • 2[2]Ghani T,Mistry K,Packan P,et al.Asymmetric source/drain extension transistor structure for high performance sub-50nm gate length CMOS devices.Symp VLSI Tech Dig,2001:17
  • 3[3]Yu B,Wang H,Xiang Q,et al.Scaling towards 35nm gatelength CMOS.Symp VLSI Tech Dig,2001:9
  • 4[4]Holmes S J,Mitcheli P H,Hakey M.Manufacturing withDUV lithography.IBM J Res Develop,1997,41(1/2):7
  • 5[5]Chiu G L T,Shaw J M.Optical lithography:introduction.IBM J Res Develop,1997,41(1/2):3
  • 6[6]Rothschild M,Forte A R,Kunz R R,et al.Lithography at a wavelength of 193nm.IBM J Res Develop,1997,41(1/2):49
  • 7[7]Bloomstein T M,Rothschild M,Kunz R R,et al.Critical issues in 157nm lithography.J Vac Sci Technol,1998,B16(6):3153
  • 8[8]Gwyn C W,Stulen R,Sweeney D,et al.Extreme ultraviolet lithography.J Vac Sci Technol,1998,B16(6):3142
  • 9[9]Liddle J A,Berger S D,Biddick C J,et al.The scattering with angular limitation in projection electron-beam lithography (SCALPEL) system.Jpn J Appl Phys,1995,34(Part 1):6663
  • 10[10]Kamon K,Miyamoto T,Myoi Y,et al.Photolithography system using annular illumination.Jpn J Appl Phys,1991,30(Part 1):3012

共引文献47

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部