期刊文献+

Exponential-fraction trial function method to the 5th-order mKdV equation

Exponential-fraction trial function method to the 5th-order mKdV equation
下载PDF
导出
摘要 This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations. This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2510-2513,共4页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos 10575082 and 10247008).
关键词 5th-order mKdV equation nonlinear partial differential equations exponential-fraction trial function 5th-order mKdV equation, nonlinear partial differential equations, exponential-fraction trial function
  • 相关文献

参考文献18

  • 1Lin C and Zhang X L 2001 Chin. Phys. 10 307
  • 2Lin C and Zhang X L 2003 Physica Scripta 68 264
  • 3Lin C and Zhang X L 2005 J. Appl. Phys. 98 076103
  • 4Ablowitz M J and Clarkson P A 1991 London Math. Soc. Lecture Note Series (Cambridge: Cambridge University Press) p459
  • 5Alfredo H A and Refugio Rigel M L 2004 Phys. Rev. D 69 105002
  • 6Hirota R 1973 J. Math. Phys. 14 810
  • 7Yan C T 1996 Phys. Lett. A 224 77
  • 8Ma W X 1994 J. Fudan University 33 319 (in Chinese)
  • 9Yan Z Y 2003 Chaos, Solitons and Fractals 16 391
  • 10Li B, Cheng Y and Zhang H Q 2003 Appl. Math. Comput. 146 107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部