期刊文献+

多变量时间序列异常样本的识别 被引量:3

Detection of Outlier Samples in Multivariate Time Series
原文传递
导出
摘要 多变量时间序列(MTS)在金融、多媒体、医学等领域的应用是非常普遍的.与其它多变量时间序列样本显著不同的样本,我们称之为异常样本.本文提出一种基于局部稀疏系数的多变量时间序列异常样本的识别算法,使用扩展的 Frobenius 范数来计算2个 MTS 样本之间相似性.使用两阶段顺序查询来进行 k-近邻查找,将不可能成为候选异常样本的 MTS 样本剪去.在2个实际数据集上进行实验.实验结果验证算法的有效性. Multivariate time series (MTS) datasets are commonly used in the fields of finance, multimedia and medicine. MTS samples, namely outlier samples, are significantly different from the other MTS samples. In this paper, a method for detecting outlier samples in the MTS dataset based on local sparsity coefficient is proposed. An extended Frobenius norm is used to compare the similarity between two MTS samples, and k -nearest neighbor ( k -NN) searches are performed by using two-phase sequential scan. MTS samples that are not possible outlier candidates are pruned, which reduces the number of computations and comparisons. Experiments are carried out on two real-world datasets, stock market dataset and BCI ( Brain Computer Interface ) dataset. The experimental results show the effectiveness of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第4期463-468,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60173058)
关键词 多变量时间序列(MTS) 局部稀疏系数 扩展的Frobenius范数 异常样本 Multivariate Time Series (MTS), Local Sparsity Coefficient, Extended FrobeniusNorm, Outlier Sample
  • 相关文献

参考文献18

  • 1Yang K, Shahabi C. A PCA-Based Similarity Measure for Multivariate Time Series // Proc of the 2nd ACM International Workshop on Multimedia Databases. Washington, USA, 2004: 65-74
  • 2Yoon H, Yang K, Shahabi C. Feature Subset Selection and Feature Ranking for Multivariate Time Series. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1186-1198
  • 3Yang K, Shahabi C. A Multilevel Distance-Based Index Structure for Multivariate Time Series // Proc of the 12th International Symposium on Temporal Representation and Reasoning. Burlington, USA, 2005:65-73
  • 4Singhalt A, Seborg D E. Clustering of Multivariate Time-Series Data // Proc of the American Control Conference. Anchorage, USA, 2002:3931-3936
  • 5Hawkins D. Identification of Outliers. London, UK: Chapman and Hall, 1980
  • 6Agyemang M, Ezeife C I. LSC-Mine: Algorithm for Mining Local Outliers // Proc of the 15th International Conference on Information Resources Management Association. New Orleans, USA, 2004:5-8
  • 7郑斌祥,席裕庚,杜秀华.基于离群指数的时序数据离群挖掘[J].自动化学报,2004,30(1):70-77. 被引量:15
  • 8Angiulli F, Pizzuti C. Outlier Mining in Large High-Dimensional Data Sets. IEEE Trans on Knowledge and Data Engineering, 2005, 17(2): 203-215
  • 9Karioti V, Caroni C. Detecting Outlying Series in Sets of Short Time Series. Computational Statistics & Data Analysis, 2002, 39(3) : 351-364
  • 10Vlachos M, Hadjieleftheriou M, Gunopulos D, et al. Indexing Multi-Dimensional Time-Series with Support for Multiple Distance Measures // Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003:216-225

二级参考文献9

  • 1Piatetsky-Shapiro G, Fayyad U, Smyth P. From data mining to knowledge discovery: An overview. In: Fayyad U,Piatetsky-Shapiro G, Smyth P et al Eds. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press,1996. 1~35
  • 2Barnet V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons, 1994
  • 3Edwin Knorr, Roymond Ng. Algorithms for mining distance-based outliers in large databases. In: Proceedings of the VLDB Conference, New York, USA: 1998. 392-403
  • 4Arning, Rakesh Agrawal, Raghavan P. A linear method for deviation detection in large database. In: International Conference on Knowledge Discovery in Databases and Data Mining (KDD-95), Portland, Oregon: AAAI Press,1996. 164~169
  • 5Bentley J L. K-d trees for semidynamic point sets. In: Proceedings of the 6th ACM Annual Symposium Computational Geometry, 1990. 187-197
  • 6Roussopoulos N, Kelley S, Vincent F. Nearest neighbor queries. In: Proceedings of ACM SIGMOD, San Jose,CA:1995. 71-79
  • 7Agrawal R, Lin K I, Sawhney H S, Shim K. Fast similarity search in the presence of noise, scaling, and translation in time series databases. In: Prococeedings of the 21st International Conference on Very Large Data Bases, 1995. 490~501
  • 8Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases. In: Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD'94),ACM Press,1994. 419-429
  • 9Berndt D J, Cliffod J. Finding patterns in time series: A dynamic programming approach. In: Fayyad U, PiatetskyShapiro G, Smyth P et al Eds. Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996. 229~248

共引文献15

同被引文献17

  • 1VARUN C, ARINDAM B, KUMAR V. Anomaly detection for discrete sequences: a survey[J]. IEEE Transactions on Knowl- edge and Data Engineering, 2012, 24(5), 823 -839.
  • 2GALEANO D, PENA R, TSAY R S. Outlier detection in multivariate time series by projection pursuit [J]. Journal of the Amer- ican Statistical Association, 2006, 101 (474), 654 -669.
  • 3BARAGONA R, BATrAGLIA F. Outlier detection in multivariate time series by independent component analysis [J]. Neural Computation, 2007, 19(7) : 1 962 - 1 984.
  • 4WENG X, SHEN J. Finding discordant subsequence in multivariate time series [C]//2007 IEEE International Conference on Automation and Logistics. Piscataway :IEEE, 2007 : 1 731 - 1 735. DOI : 10.1109/ICA L. 27. 4338852.
  • 5YaNG K, SHAHABI C. A PCA - based similarity measure for multivariate time series [C]//Proceedings of the Second ACM International Workshop on Multimedia Databases. Washington: ACM, 2004 : 65 - 74. DOI : 10.1145/1032604. 1032616.
  • 6SINGHA A , SEBORG D E. Pattern matching in historical batch data using PCA [J]. IEEE Control Systems Magazine, 2002, 22(5) : 53 -63.
  • 7CHENG H B, TAN P N, POTYER C, et al. A robust graph - based algorithm for detection and characterization of anomalies in noisy multivariate time series [C]// Workshops Proceedings of the 8th IEEE International Conference on Data Mining. Pisa: IEEE, 2008 : 349 - 358. DOI: 10.1109/ICDMW. 2008.48.
  • 8YAO Z, MARK P, RABBAT M. Anomaly detection using proximity graph and PageRank algorithm[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(4) : 1 288 -1 300.
  • 9PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bring order to the web[R]. Stanford: Stanford University, 1998.
  • 10PageRank[M][EB/O L]. [2013 - 04 - 23]. http ://en. wikipedia, org/wiki/Pageaank.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部