期刊文献+

一种基于Rough集理论的两阶段禁忌搜索算法

A Two-Stage Tabu Search Algorithm Based on Rough Set Theory
原文传递
导出
摘要 针对以旅行商问题(TSP)为代表的组合优化问题提出一种基于 Rough 集理论的两阶段禁忌搜索算法.该算法没有采用多数自适应禁忌搜索算法所用的动态调整禁忌搜索参数的方式平衡集中性搜索和多样性搜索,而是采用两阶段搜索策略.第一阶段着眼于多样性搜索.通过激励搜索过程远离起点,对解空间进行相当程度的探索,在此基础上构造希望区域决策表,继而获得希望区域.第二阶段着眼于集中性搜索.以包含希望区域的最佳解作为起点进行集中性搜索.在选择当前解时,利用多样性搜索得到的路径信息进行有条件的限制.TSP 基准问题的计算结果表明该算法是可行有效的. A two-stage tabu search algorithm based on rough set theory is proposed for combinatorial optimization problems which are represented by TSP . For most of the adaptive tabu search algorithms, the balance between intensification and diversification is achieved by tuning tabu search parameters dynamically. Unlike them, a two-stage search strategy is used in the proposed approach. The aim of the first stage is diversification. In this stage, the search area is stimulated to move away from the initial solution, and the whole solution space is explored to a certain degree. Then , based on the solutions obtained in diversification , a promising area decision table is constructed and the corresponding promising area is found . The goal of the second stage is intensification. In this stage, the search procedure begins with the best solution which contains the promising area. In the search procedure, the selection of the new current solution is limited so as to utilize the useful information obtained in the first stage. The proposed algorithm is tested by TSP benchmark problems. The results show that it is feasible and effective.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第4期478-484,共7页 Pattern Recognition and Artificial Intelligence
基金 国家863计划资助项目(No.2005AA114030)
关键词 禁忌搜索(TS) ROUGH集 集中性 多样性 旅行商问题(TSP) Tabu Search (TS), Rough Set, Intensification, Diversification, Traveling Salesman Problem (TSP)
  • 相关文献

参考文献5

二级参考文献32

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 3[1]F Glover, M Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997
  • 4[2]Jacques A Ferland, I Soumia, L Alain .et al.. Scheduling using tabu search with intensification and diversification. Computer & Operations Research, 2001, 28(11): 1075~1092
  • 5[3]R Chelouah, P Siarry. Tabu search applied to global optimization. European Journal of Operation Research, 2000, 123(2): 256~270
  • 6[4]G Michel, L Gilbert, S Frédéric. A tabu search heuristic for the undirected selective traveling salesman problem. European Journal of Operation Research, 1998, 106(2-3): 539~545
  • 7[5]L Guangyun, H Yi, Q Yuhi .et al.. Research on influence of solving quality based on different initializing solution algorithm in tabu search. In: Proc of Int'l Conf on Communication, Circuits and Systems and West Sino Exposition. Chengdu: IEEE Press, 2002. 1141~1145
  • 8[10]Gerhard R. TSPLIB. 2001. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
  • 9[11]I Kubn Altinel, Necati Aras, B John Oommen. Fast efficient and accurate solutions to the Hamiltonian path problem using neural approaches. Computers & Operations Research, 2000, 27(5): 461~494
  • 10Wang J,Fuzzy Logic and Soft Computing,1999年,195页

共引文献877

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部