期刊文献+

用于非平衡样本分类的近似支持向量机 被引量:1

Proximal Support Vector Machines for Samples with Unbalanced Classification
原文传递
导出
摘要 针对标准的近似支持向量机(PSVM)没有考虑样本分布不平衡的问题,提出一种改进的 PSVM 算法(MPSVM).根据训练样本数量的不平衡对正负样本集分别分配不同的惩罚因子,并将原始优化问题中的惩罚因子由数值变更为一个对角阵.最后推导出线性和非线性 MPSVM 的决策函数,并将其与 PSVM、非平衡的 SVM 的运算机理和性能进行比较.实验结果表明,MPSVM 的性能优于 PSVM,与非平衡 SVM 方法相比效率更高. Aiming at the problem that unbalanced data classification is disregarded in the standard Proximal Support Vector Machines (PSVM), a modified PSVM algorithm is presented, namely MPSVM . The different penalty factors are assigned to the positive and negative training sets according to the unbalanced population . The penalty values are transformed into a diagonal matrix. Then the decision functions for the linear and nonlinear MPSVM are achieved. Finally, the comparisons of algorithmic principle and performance are drawn. The experimental results show that MPSVM has a better generalization performance than PSVM and higher efficiency than the unbalanced SVM.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第4期552-557,共6页 Pattern Recognition and Artificial Intelligence
关键词 近似支持向量机(PSVM) 非平衡分布 改进的近似支持向量机(MPSVM) Proximal Support Vector Machine (PSVM), Unbalanced Distribution, ModifiedProximal Support Vector Machine (MPSVM)
  • 相关文献

参考文献18

  • 1Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 2000
  • 2Cortes C, Vapnik V. Support Vector Networks. Machine Learning, 1995, 20(3): 273-297
  • 3Drucker H, Burges C J C, Kaufman L, et al. Support Vector Regression Machines // Mozer M C, Jordan M I, Petsche T, eds. Advances in Neural Information Processing Systems. Cambridge, UK: MIT Press, 1997:155-161
  • 4Platt J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization//Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, UK: MIT Press, 1999:185-208
  • 5Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines// Proc of the International Workshop on Neural Networks for Signal Processing. Amelia Island, USA, 1997:276-285
  • 6Keerthi S, Shevade S, Bhattcharyya C, et al. Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural Computation, 2001, 13(3) : 637-649
  • 7Suykens J A K, Vandewalle J. Least Squares Support Vector Machines. Neural Network Letters, 1999, 9(3): 293-300
  • 8Mangasarian O L. Generalized Support Vector Machines // Smola A, Bartlett P, Scholkopf B, et al, eds. Advances in Large Margin Classifier. Cambridge, UK: MIT Press, 2000: 135-146
  • 9Fung G, Mangasarian O L. Proximal Support Vector Machine Classifiers// Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001:77-86
  • 10Agarwal D K, DuMouchel W. Shrinkage Estimator Generalizations of Proximal Support Vector Machines // Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:173-182

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部