摘要
聚类是非监督学习的关键问题.本文在模糊最小-最大聚类网络(FMMCN)和分层聚类思想的基础上,提出一种分层模糊最小-最大聚类算法.与目前的常用聚类算法相比,该方法可以根据问题需要动态确定聚类数目,并克服 FMMCN 样本输入次序依赖性的缺陷.对相关数据集的实验结果表明该方法具有优良的聚类性能.
Clustering is considered as the most important problem of unsupervised learning. A Hierarchical Fuzzy Min-Max Clustering Algorithm (HFMM) is presented based on the original Fuzzy Min- Max Clustering Neural Network ( FMMCN ) and hierarchical clustering . Compared with the existing methods for clustering, the proposed algorithm dynamically determines the number of clusters to meet the demands of the problem. Moreover it overcomes the shortcomings of FMMCN- order dependent. Experimental results on three databases demonstrate that HFMM has high clustering performance.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2007年第4期558-564,共7页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金(No.60575028
60175011)