期刊文献+

图像尺度不变特征提取新方法

New Method for Scale-invariant Feature Extracting of Images
下载PDF
导出
摘要 在文献[1]的基础上对尺度不变核进行深入研究,从理论上解决了初始函数选择的问题,构造了一族对尺度缩放具有不变性的核函数,能有效提取图像的尺度不变特征。核函数用于目标识别时,将图像发生尺度变换时数字化抽样插值所产生的误差引入到核参数的优化中,使得核函数能根据目标调整参数,达到最优的识别效果。实验结果表明,当用于二元目标的识别分类时,基于尺度不变核的方法能取得很好的识别效果。 This paper presents a new scale-invariant feature extracting method using kernels. The method is an extension of the framework of finding geometric invariant features proposed by Chen et al[ 1 ]. A deeper research of initial function is provided and a family of kernels invariant to scale is constructed. When used for target recognition, the error of sampling of images is considered into the Fisher like rule function, which provides an optimal chose of kernel parameters. It is shown that the new method is well suitable for classification of two classes' problem in our experiments.
出处 《信号处理》 CSCD 北大核心 2007年第4期506-511,共6页 Journal of Signal Processing
基金 "十五"国防预研项目 项目编号:41322020201
关键词 尺度不变特征 核函数 不动点 目标识别 scale-invariant feature kernel function fixed point target recognition
  • 相关文献

参考文献8

  • 1陈涛,蒋咏梅,粟毅,郁文贤.基于压缩映射不动点的图像几何不变特征提取[J].信号处理,2007,23(1):19-26. 被引量:3
  • 2Tony Lindeberg, Scale-space for discrete signals, IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 12, No. 3, March 1990.
  • 3D. G. Lowe, Object recognition from local scale-invariant features, International Conference on Computer Vision, Corfu, Greece, 1999, pp. 1150-1157.
  • 4Yan Ke, Rahul Sukthankar, PCA-SIFT: A more distinctive representation for local image descriptors, Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition.
  • 5Quang Minh Tieng, Wageeh W. Boles, Wavelet-Based affine invariant representation: a tool for recognizing planar objects in 3D space, IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 19, No. 8, August 1997.
  • 6M. K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, Vol. IT- 8, No. 2, pp. 179-187, 1962.
  • 7Yacov Hel-Or, Patrick C. Teo, A common framework for steerability, motion estimation, and invariant feature detection, Proceedings of the 1998 IEEE Internalional Symposium on Circuits and Systems, pp. 337 -340.
  • 8Esa Rahtu, Mikko Salo, Janne Heikkila, Affine invariant pattern recognition using multiscale autoconvolution, IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 27, No. 6, June 2005.

二级参考文献7

  • 1D. G. Lowe, Object recognition from local scale-invariant features, International Conference on Computer Vision,Corfu, Greece, 1999, pp. 1150-1157.
  • 2D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision,2004.
  • 3Yan Ke, Rahul Sukthankar, PCA-SIFT: A more distinctive representation for local image descriptors, Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition.
  • 4M. K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, Vol. IT-8, No. 2, pp. 179-187,1962.
  • 5T. H. Reiss, The revised fundamental theorem of moment invariants, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 13, No. 8, August 1991.
  • 6Yacov Hel-Or, Patrick C. Teo, A common framework for steerability, motion estimation, and invariant feature detection,Proceedings of the 1998 IEEE International Symposium on Circuits and Systems,pp. 337-340.
  • 7Klaus Arbter, Wesley E. Snyder, Hans Burkhardt, Application of affine-invariant Fourier descriptor to recognition of 3-D objects.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部