摘要
Jacobson在文献[1]中证明了含非零基座本原环的结构定理:环R是含非零基座S的本原环当且仅当存在除环△上一对对偶空间(M,M′)使得,其中,Ω是M的全线性变换环},(?)(M,M′)是(?)(M,M′)中的所有关于M的秩是有限的线性变换的集合。此后人们又用不同方法证明了这个定理,如文献[2,3]。本文目的是在除环上的向量空间的全线性变换环中引进关于它的子环的拟元的概念,从而得到了含非零基座本原环的拟临界环,并改进了文献[1]中关于含非零基座本原环的结构定理。
出处
《科学通报》
EI
CAS
CSCD
北大核心
1997年第2期137-140,共4页
Chinese Science Bulletin