期刊文献+

一种基于相空间高斯混合模型的测井相识别方法

A method of well-log facies recognition based on a Gaussian mixture model in phase space
下载PDF
导出
摘要 油层测井相识别是油田开发的重要依据.油层的测井相类别如果发生误判,将会影响它和邻井对应油层之间的连通对比关系的判断,造成开采方案的失败.测井相的类间差异小,领域知识要求高,属于难度较大的模式识别问题.在研究了混沌建模的基本方法后,给出了一种基于相空间高斯混合模型的测井相识别方法.对每类训练样本形成一个重构相空间,用EM算法学习得到一个高斯混合模型,待识序列按其属于不同类别的高斯混合模型的条件概率进行分类.该方法可以对不规则样本的形态参数进行估计,从而提高测井相的识别精度.实验结果证明了该方法的有效性. Proper identification of facies of oil bearing layers in well-logs is crucial to oilfield development. Misjudged facies impair judgment of a layer's connective relationship with adjacent oil-layers, and can cause the failure of an oil field development plan. Well-log facies recognition is quite difficult because of the small differences among their classes and requires knowledge of multiple disciplines. This paper presents a method for well-log facies recognition based on a Gaussian mixture model in phase space after chaotic modeling methods are studied. For each class, a phase space is reconstructed with respect to each class and a Gaussian mixture model is learned by an EM algorithm. The sequence to be recognized can be classified according to the conditional probabilities belonging to the different Gaussian mixture models. This method can estimate the shape parameters of irregular samples so that the recognition rate of well-log facies increases. The effectiveness of this method has been experimentally demonstrated.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第8期905-909,共5页 Journal of Harbin Engineering University
关键词 相空间 高斯混合模型 测井相识别 混沌建模 EM算法 phase space Gaussian mixture model well-log facies recognition chaotic modeling EM algo rithm
  • 相关文献

参考文献13

  • 1MORIMOTO T,TAKEUCHI T,MIYATA H,HASHIMOTO Y.Pattern recognition of fruit shape based on the concept of chaos and neural networks[J].Computers and Electronics in Agriculture,2000,26:171-186.
  • 2ATAEI M,LOHMANN B,KHAKI S A,LUCAS C.Model based method for estimating an attractor dimension from uni/multivariate chaotic time series with application to Bremen climatic dynamics[J].Chaos,Solitons and Fractals,2004,19:1131-1139.
  • 3UEDA N,NAKANO R,GHAHRAMANI Z,HINTON G E.SMEM algorithm for mixture models[J].Neural Computation,2000,12:2109-2128.
  • 4FIGUEIREDO M A T,JAIN A K.Unsupervised learning of finite mixture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):381-396.
  • 5ZHANG Z H,CHEN C B,SUN J,CHAN K L.EM algorithms for learning Gaussian mixture models with split-and-merge operation[J].Pattern Recognition,2003,36(9):1973-1983.
  • 6VERBEEK J J,VLASSIS N,KRAOSE B.Efficient greedy learning of Gaussian mixture models[J].Neural Computation,2003,5(2):469-485.
  • 7马军海,陈予恕,刘曾荣.动力系统实测数据的非线性混沌模型重构[J].应用数学和力学,1999,20(11):1128-1134. 被引量:32
  • 8刘咏梅,宋克欧,刘大昕.测井时间序列的替代数据混沌判定方法的研究[J].哈尔滨工程大学学报,2004,25(2):217-220. 被引量:6
  • 9TAKENS F.Determining strange attractors in turbulence[J].Lecture notes in Mathematics,1981,898:361-381.
  • 10SHU K N,MCLACHLAN G.On some variants of the EM Algorithm for the fitting of finite mixture models[J].Austrian Journal of Statistics,2003,32(1):143-161.

二级参考文献18

  • 1雍世和.测井资料数字处理与综合解释[M].北京:石油工业出版社,1982..
  • 2云南省社会科学院嫡.走向21世纪的云南民族文化[C].云南人民出版社,1999..
  • 3黄小驹.我们为什么要重提手工劳动[N].中国文化报,2004.03.13.
  • 4丹增.关于当前大力发展文化产业的理论思考[N].光明日报,2003.08.15.
  • 5Ma Junhai,The Non Linear Dynamic System Reconstruction of the Chaotic Timeseries,Athesis for Degree of Engineering,1997年,5页
  • 6Liang Yuecao,Phys D,1995年,85卷,8期,225页
  • 7Zhang Qinghua,IEE Transections Neural Networks,1992年,6卷,11期,889页
  • 8Yang Shuzi,Applied Time Series Analysis in Engineering,1992年
  • 9Chen C H,Applied Time Series Analysis,1989年
  • 10Wu Ya,Applied Time Series Analysis,1989年

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部