摘要
设K_n是具有n个顶点的完全图,f(n)是满足下列条件的最小正整数:对于任意的正整数m≥f(n),存在K_n的一个m边着色,使得K_n中的任一个K_4至少含5种颜色.Erd(?)s和Gy(?)rf(?)s给出了f(n)的上下界:2/3n<f(n)<n;并且证明了f(9)=8.唐明元证明了f(10) =9;并且改进了f(n)的下界:f(n)>2/3n+1.作者进一步改进了f(n)的下界:当n≥20时,f(n)>1/8(6n-5).给出了关于5色K_4问题的两个充要条件.
Let Kn be the complete graph with n vertices , f(n) the smallest positive integer satisfying the following condition : For any positive integer m ≥ f(n) , there is an m - edge coloring of Kn, such that every K4 in Kn gets at least 5 colors . Erdoes and Gyarfas gave the upperlower bound off(n) : 2/3n〈f(n)〈n ; and proved f(9) = 8. Tang ming-yuan proved f(10) =9 ; and improved the lower bound of f(n) : f(n)〉2/3n+1, We proved f( 11 ) = 10 ; and improved the lower bound of f(n)again: f(n)〉1/8(6n-5) ,(n ≥ 20). In this paper, two necessarily and sufficient condition for the five-color K4 problem is given.
出处
《上海师范大学学报(自然科学版)》
2007年第4期30-33,共4页
Journal of Shanghai Normal University(Natural Sciences)
关键词
5色K4条件
4色H4条件
3色C4条件
five-color K4 condition
four-color H4 condition
three-color C4 condition