期刊文献+

极化上皮细胞中转运蛋白的分选(英文) 被引量:1

Transport protein sorting in polarized epithelial cells
下载PDF
导出
摘要 上皮组织细胞必须极化其表面区域以执行其转运生理功能。不同膜转运蛋白定位于细胞膜的不同区域,而细胞与细胞之间则须通过紧密连接复合体紧密连接成极化区域,并调节旁细胞途径的通透性。精密的机体要求上皮细胞具备一个筛选装置,用于将新合成的转运蛋白定位于合适的表面区域;转运蛋白本身也必须内含规定其功能位置的分选信号。目前上皮细胞蛋白分选和蛋白质之间相互作用已被逐渐阐明。上皮细胞通过细胞信号转导途径形成极化初始状态,将自己定位于特定位置,调节细胞与细胞之间、细胞与基质之间的相互作用。最近研究发现其信号转导通路的一个成员是一种AMP激活的蛋白激酶(AMP-stimulated protein kinase,AMPK),它也是细胞能量感受器。 In order to carry out their physiological functions, the cells of transporting epithelial tissues must be able to polarize their cell surface domains. Different collections of membrane transport proteins must be distributed to distinct domains of the plasma membrane, and cells must be coupled to one-another through junctional complexes that help organize polarized domains and regulate the permeability of the paracellular pathway. This exquisite organization requires that epithelial cells possess a sorting apparatus that can target newly synthesized transport proteins to the appropriate surface domains. Furthermore, the transport proteins themselves must possess information embedded within their structures that specifies their sites of ultimate functional residence. The nature of this information, and of the protein-protein interactions involved in its interpretation, is beginning to be elucidated. The initial formation of the polarized state involves signaling cascades that epithelial cells use to orient themselves to sites of cell-cell and cell-matrix contact. Recent evidence suggests that one component of these cascades is a kinase that also serves as a cellular energy sensor.
出处 《生理学报》 CAS CSCD 北大核心 2007年第4期505-511,共7页 Acta Physiologica Sinica
基金 This work was supported by the National Institute of Health(No.DK17433,DK072614).
关键词 极化上皮细胞 转运蛋白 紧密连接 分选信号 polarized epithelia transport proteins tight junctions sorting signals
  • 相关文献

参考文献44

  • 1Caplan MJ.Membrane polarity in epithelial cells:protein sorting and establishment of polarized domains.Am J Physiol 1997;272:F425-F429.
  • 2Muth TR,Caplan MJ.Transport protein trafficking in polarized cells.Annu Rev Cell Dev Biol 2003; 19:333-66.
  • 3Stevens BR,Kaunitz JD,Wright EM.Intestinal transport of amino acids and sugars:advances using membrane vesicles.Annu Rev Physiol 1984; 46:417-433.
  • 4Caplan MJ.Ion pump sorting in polarized renal epithelial cells.Kidney Int 2001; 60:427-430.
  • 5Horisberger JD.Recent insights into the structure and mechanism of the sodium pump.Physiology (Bethesda) 2004; 19:377-387.
  • 6Horisberger JD,Lemas V,Kraehenbuhl JP,Rossier BC.Structurefunction relationship of Na,K-ATPase.Annu Rev Physiol 1991;53:565-584.
  • 7Rabon EC,Reuben MA.The mechanism and structure of the gastric H,K-ATPase.Annu Rev Physiol 1990; 52:321-344.
  • 8Ackermann U,Geering K.Mutual dependence of Na,K-ATPase alpha-and beta-subunits for correct posttranslational processing and intracellular transport.FEBS Lett 1990; 269:105-108.
  • 9Geering K,Crambert G,Yu C,Korneenko TV,Pestov NB,Modyanov NN.Intersubunit interactions in human X,K-ATPases:role of membrane domains M9 and M10 in the assembly process and association efficiency of human,nongastric H,K-ATPase alpha subunits (ATP1al1) with known beta subunits.Biochemistry 2000; 39:12688-12698.
  • 10Gottardi CJ,Caplan MJ.Molecular requirements for the cellsurface expression of multisubunit ion-transporting ATPases.Identification of protein domains that participate in Na,KATPase and H,K-ATPase subunit assembly.J Biol Chem 1993;268:14342-14347.

同被引文献23

  • 1Tousson A, Alley CD, Sorscher EJ, Brinkley BR, Benos DJ. Immunochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J Cell Sci 1989; 93 (Pt 2): 349-362.
  • 2Reinhardt J, Golenhofen N, Pongs O, Oberleithner H, Schwab A. Migrating transformed MDCK cells are able to structurally polarize a voltage-activated K^+ channel. Proc Natl Acad Sci USA 1998; 95(9): 5378-5382.
  • 3Angelides KJ. Fluorescently labeled Na^+ channels are localized and immobilized to synapses of innervated muscle fibres. Nature 1986; 321(6065): 63-66.
  • 4Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976; 260 (5554): 799-802.
  • 5Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981; 391(2): 85-100.
  • 6Korchev YE, Negulyaev YA, Edwards CR, Vodyanoy I, Lab MJ. Functional localization of single active ion channels on the surface of a living cell. Nat Cell Biol. 2000: 2(9): 616-619.
  • 7Gu Y, Gorelik J, Spohr HA, Shevchuk A, Lab MJ, Harding SE, Vodyanoy I, Klenerman D, Korchev YE. High-resolution scanning patch-clamp: new insights into cell function. FASEB J 2002; 16(7): 748-750.
  • 8Hansma PK, Drake B, Marti O, Gould SA, Prater CB. The scanning ion-conductance microscope. Science 1989; 243 (4891): 641-643.
  • 9Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ. Scanning ion conductance microscopy of living cells. Biophys J 1997; 73(2): 653-658.
  • 10Sanchez D, Anand U, Gorelik J, Benham CD, Bountra C, Lab M, Klenerman D, Birch R, Anand P, Korchev Y. Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy. J Neurosci Methods 2007; 159(1): 26-34.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部