摘要
非平衡环境中,粒子运动的暂态是稳态的必经阶段,为了研究暂态与稳态的关系,从随机主方程出发,利用特征根方法,以四态模型为例,讨论了粒子一维周期性随机跃迁运动的暂态特征及其特征时间,得出结论:几率随时间的演化规律由跃迁速率常数和初始条件共同决定,而到达稳态的特征时间只由跃迁速率常数决定,与初始条件无关。
The transient is certainly in the front of the steady state when a particle moves in the nonequilibrium condition. For studying the relation between the transient and the steady state, beginning with the master equation, and utilizing the latent root method, the transient character of a particle's one-dimensional periodic stochastic transition and the characteristic time are discussed at the four-state model. We draw the conclusions that the transient behaviors are related to the transition rates and the initial condition, and the characteristic time is only determined by the transition rates.
出处
《北京印刷学院学报》
2007年第4期73-75,共3页
Journal of Beijing Institute of Graphic Communication
基金
北京印刷学院青年科研基金资助项目(E-6-07-54)
关键词
主方程
几率分布
暂态特征
特征时间
the master equation
probability distribution
transient characteristic
characteristic time