期刊文献+

算子方程AX=C的正解问题 被引量:2

Positive Solutions of Operator Equation AX=C
下载PDF
导出
摘要 利用Hilbert空间中有界线性算子的分块矩阵技巧,结合缺项算子矩阵的可补性和算子A的Moore-Penrose广义逆,得到了算子方程AX=C有自伴和正解的充要条件,并利用A的Moore-Penrose广义逆给出了通解. Using the technique of block-operator matrices of bounded linear operators on a Hilbert space, the properties of operator matrices and the Moore-Penrose inverse of A, the sufficient and efficient conditions is obtained in which the operator equation AX = C has self-adjoint and positive solutions. Finally, the generalized self-adjoint and positive solutions of AX = C are given.
作者 田学刚
出处 《西安文理学院学报(自然科学版)》 2007年第3期36-39,共4页 Journal of Xi’an University(Natural Science Edition)
基金 国家自然科学基金资助项目(1057113)
关键词 正算子 Shorted算子 算子方程 positive operator shorted operator operator equation
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]Moreland,T.,Gudder,S.,Infima of Hilbert space effects,Linear Algebra and Its Applications,1999,286:1-17.
  • 2[2]Kadison,R.,Order properties of bounded self-adjoint operators,Proc.Amer.Math.Soc.,1951,34:505-510.
  • 3[3]Gheondea,A.,Gudder,S.,Sequential product of quantum effect,Proc.Amer.Math.Soc.,2004,132:503-512.
  • 4[4]Gudder,S.,Lattice properties of quantum effects,J.Math.Phys.,1996,37:2637-2642.
  • 5[5]Lajos Molnár,Preservers on Hilbert space effects,Linear Algebra and Its Applications,2003,370:287-300.
  • 6[6]Yang,J.,A note on commutativity up to a factor of bounded operators,Proc.Amer.Math.Soc.,2004,132:1713-1720.
  • 7[7]Du,H.,Another generalization of Anderson's theorem,Proc.Amer.Math.Soc.,1995,123:2709 2714.
  • 8[8]Ando,T.,Problem of infimum in the positive cone,Analytic and Geometric Inequalities and Applications,1999,478:1-12.
  • 9[9]Conway,J.,A Course in Functional Analysis,New Youk:Spring-Verlag,1990.

共引文献15

同被引文献12

  • 1DU Hongke DENG Chunyuan LI Qihui.On the infimum problem of Hilbert space effects[J].Science China Mathematics,2006,49(4):545-556. 被引量:16
  • 2Kirrinnis P. Fast Algorithms for the Sylvester Equation AX - XB^T = C [J]. Theoret Comput Sci, 2001, 259 (1): 623 - 638.
  • 3Lin Y Q. Minimal Residual Methods Augmented with Eigenvectors for Solving Sylvester Equations and Generalized Sylvester Equations [J]. Applied Mathematics and Computation, 2006, 181(1):487- 499.
  • 4Kaabi A, Kerayechiana A, Toutounian F. A New Version of Successive Approximations Method for Solving Sylvester Matrix Equations [J]. Applied Mathematics and Computation, 2007, 186(1): 638-645.
  • 5Bao L, Lin Y Q, Wei Y M. A New Projection Method for Solving Large Sylvester Equations [J]. Applied Numerical Mathematics, 2007, 57(5): 521-532.
  • 6Sorensen D C, Antoulas A C. The Sylvester Equation and Approximate Balanced Reduction [J]. Linear Algebra Appl, 2002, 352(2): 671-700.
  • 7Zhou B, Duan G R. An Explicit Solution to the Matrix Equation AX-XF^T = BY [J]. Linear Algebra Appl, 2005, 402(3) : 345 -366.
  • 8Djordjevic D S. Explicit Solution of the Operator Equation A^* X-X^* A = B [J]. Journal of Computational and Applied Mathematics, 2007, 200(2) : 701 - 704.
  • 9田学刚,杜鸿科.Shorted算子的几何结构(英文)[J].应用泛函分析学报,2007,9(4):289-298. 被引量:4
  • 10索洪敏,唐春雷.一类非线性Volterra-Stieltjes型积分方程解的存在性[J].西南师范大学学报(自然科学版),2009,34(4):4-8. 被引量:5

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部