期刊文献+

北京城市不透水层覆盖度遥感估算 被引量:36

URBAN IMPERVIOUS SURFACE ABUNDANCE ESTIMATION IN BEIJING BASED ON REMOTE SENSING
下载PDF
导出
摘要 应用线性光谱混合模型研究城市环境生物物理组成,端元的确定是其关键。城市地表同物异谱现象显著,光谱变异强烈,对于高反照率地物尤其突出。端元的光谱变异对线性光谱混合模型拟合结果产生重要影响。以同种纯净地物光谱曲线形状具有相似性为出发点,提出了一种端元优化选取方法,在此基础上计算了北京城市地表不透水层覆盖度。研究结果表明,该方法能够在一定程度上减小端元光谱变异性对线性光谱混合模型拟合结果的影响,进而提高城市不透水层覆盖度的估算精度。 The linear spectral mixture model (LSMM) is usually used to study the urban environmental biophysical composition. The development of high - quality fraction images depends greatly on the selection of suitable end - members, which constitutes a key step. Spectral variability is obvious in the heterogeneous urban area, especially for high albedo objects, and this phenomenon affects the accuracy of LSMM. The study in this paper is based on the key assumption that the same pure land cover types exhibit obvious spectral similarity. The objective of this study is to examine the applicability of optimizing end - members selection based on spectral similarity. Four end - members, namely, vegetation, soil, low albedo and high albedo, were selected to model urban land cover by using Landsat Thematic Mapper data. Impervious surface abundance was estimated by adding low albedo fraction and caused by end - member spectral variability. The results of this study reveal that impervious surface abundance distribution can be derived with a promising accuracy.
出处 《国土资源遥感》 CSCD 2007年第3期13-17,27,共6页 Remote Sensing for Land & Resources
基金 国家自然科学基金项目(40671130) 遥感科学国家重点实验室开放基金项目
关键词 端元 光谱相似性 线性光谱混合模型 不透水层 城市生物物理组成 End-member Spectral similarity Linear spectral mixture model Impervious surface Urban biophysical composition
  • 相关文献

参考文献15

  • 1Ridd M K.Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote Sensing:Comparative Anatomy for Cities[J].International Journal of Remote Sensing,1995,16(12):2165-2185.
  • 2Lu D S,Weng Q H.Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery[J].Photogrammetric Engineering & Remote Sensing,2004,70(9):1053-1062.
  • 3Rashed T,Weeks J R,Gadalla M S,et al.Revealing the Anatomy of Cities through Spectral Mixture Analysis of Multispectral Satellite Imagery:A Case Study of the Greater Cairo Region,Egypt[J].Geocarto International,2001,16(4):5-15.
  • 4Small C.Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis[J].International Journal of Remote Sensing,2001,22(7):1305-1334.
  • 5Small C.Multitemporal Analysis of Urban Reflectance[J].Remote Sensing of Environment,2002,81:427-442.
  • 6Wu C S,Murray A T.Estimating Impervious Surface Distribution by Spectral Mixture Analysis[J].Remote Sensing of Environment,2003,84:493-505.
  • 7Braun M,Herold M.Mapping Imperviousness Using NDVI and Linear Spectral Unmixing of ASTER Data in the Cologne-Bonn Region (Germany)[A].Proceeding of the SPIE 10th International Symposium on Remote Sensing[C].Spain,2003.
  • 8Wu C S.Normalized Spectral Mixture Analysis for Monitoring Urban Composition Using ETM+ Imagery[J].Remote Sensing of Environment,2004,93:480-492.
  • 9Rashed T,Weeks J R,Roberts D,et al.Measuring the Physical Composition of Urban Morphology Using Multiple Endmember Spectral Mixture Models[J].Photogrammetric Engineering & Remote Sensing,2003,69(9):1011-1020.
  • 10Weng Q H,Lu D S,Schubring J.Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies[J].Remote Sensing of Environment,2004,89:467-483.

二级参考文献9

  • 1Rundquist D, Lawson M, Queen L, et al. The Relationship Between the Timing of Summer-Season Rainfall Events and Lake-Surface Area[J]. Water Resources Bulletin, 1987, 23(3): 493-508.
  • 2Boland D H P. Trophic Classification of Lakes Using Landsat-1(ERTS-1) Multispectral Scanner Data[A]. US EPA, Office of Research and Development, Corvallis Environmental Research Laboratory[A], Corvallis, Oregon, 1976.
  • 3McFeeters S K. The Use of Normalized Difference Water Index(NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
  • 4Jensen J R. Introductory Digital Image Processing: A Remote Sensing Perspective[M]. NJ: Prentice Hall Logicon Geodynamics, Inc., 1996.
  • 5Rouse J W, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with ERTS[A]. Third ERTS Symposium[C], 1973, NASA SP-351, 1: 309-317.
  • 6Gao B C. NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J]. Remote Sensing of Environment, 1996, 58: 257-266.
  • 7Wilson E H, Sader S A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery[J]. Remote Sensing of Environment, 2002, 80: 385-396.
  • 8杜云艳,周成虎.水体的遥感信息自动提取方法[J].遥感学报,1998,2(4):364-369. 被引量:195
  • 9都金康,黄永胜,冯学智,王周龙.SPOT卫星影像的水体提取方法及分类研究[J].遥感学报,2001,5(3):214-219. 被引量:246

共引文献1431

同被引文献437

引证文献36

二级引证文献335

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部