摘要
利用实时探空数据和单窗算法对2004年7月6日北京市TM图像进行地表温度反演,根据反演结果,采用阈值法将北京城区地表温度空间分布分为植被正常温度区、水体正常温度区、水体高温区、裸地正常温度区、建筑物低温区、建筑物正常温度区、建筑物高温区、植被建筑物混合高温区和植被建筑物混合正常温度区等9种模式。在此基础上,对水体高温区、植被建筑物混合高温区、建筑物低温区和建筑物高温区等4种温度异常区进行了实地抽样调查,详细分析了这些温度异常区形成的原因。
Using Landsat 5 TM remotely sensed data and field calibration in Beijing performed on July 6, 2004, the authors detected the temperature distribution through the single-window algorithm and field validation. Nine patterns were recognized on the basis of the temperature data, namely, ①water body normal temperature area, ② water body abnormal temperature area, ③vegetation normal temperature area, ④vegetation and construction mixed normal temperature area, ⑤vegetation and construction mixed abnormal temperature area, ⑥construction low temperature area, ⑦construction normal temperature area, ⑧construction high abnormal temperature area, and ⑨ bare soil normal temperature area. The abnormal areas were sampled and tested in situ in detail so as to extract the factors responsible for the abnormality. A new way has thus been found to monitor the city environment and the living status.
出处
《国土资源遥感》
CSCD
2007年第3期23-27,I0002,共6页
Remote Sensing for Land & Resources
基金
国家重点基础研究发展规划项目"973计划"(G20000779)
国家自然科学基金项目(40471094)
中国地质调查项目"城市环境地球化学调查方法技术及污染影响机理研究(20032013004)"
关键词
TM
单窗算法
地表温度
阈值法
城市温度异常区
TM
Single -window algorithm
Surface temperature
Threshold value
City temperature abnormal area