期刊文献+

大豆PM2蛋白(LEA3)表达可提高酵母重组子的耐盐性 被引量:5

EXPRESSION OF SOYBEAN MP2 PROTEIN(LEA3)CONFERS SALT TOLERANCE IN SACCHAROMYCES CEREVISIAE
下载PDF
导出
摘要 大豆PM2蛋白属LEA3(late embryogenesis abundant group3)蛋白。本实验以含大豆PM2基因的重组载体pET28a/PM2为模板,PCR法构建酵母表达载体pYES2/PM2,并转化酵母细胞得到重组菌INV/PM2。SDS-PAGE电泳结果表明,INV/PM2重组菌可被诱导表达分子量约为50 kDa的蛋白条带,与目的蛋白的理论分子量(50 kDa)接近。利用液相色谱-电喷雾质谱对酵母重组子表达的重组蛋白进行分析鉴定。分别测定未转基因重组菌INV/pYES2和转PM2基因的重组菌INV/PM2在无胁迫、和含1.8 mol/LNaCl2、mol/L山梨糖培养基中的生长曲线。结果表明大豆PM2蛋白的表达对酵母正常生长没有影响。在含高盐的培养基里,转PM2基因酵母INV/PM2的延滞期短于对照菌。这表明PM2蛋白的表达可以提高酵母细胞的耐盐能力。但是在含山梨糖的高渗培养基里,两种菌的生长情况无明显差异。 Soybean PM2 protein belongs to the family of group 3 LEA(late embryogenesis abundant)proteins. Nucleotide acid fragment of PM2 gene was amplified by PCR reaction using the plasmid pET28a/PM2 as the template. The yeast expression plasmid of pYES2/PM2 was constructed and then transformed into yeast to create recombinant INV/PM2. The results of SDS- PAGE analysis showed that a specific protein band of 50 kDa was expressed in the recombinant yeast of INV/PM2. The protein was close to the theoretic molecular weight of PM2 protein and was identified as PM2 protein by LC-ESI-MS assay. The growth curves of recombinant INV/ PM2 and INV/pYES2 with an empty vector were generated under the non-stress, high salinity (1.8mol/L NaCl) or osmotic (2mol/L sorbitol) conditions,respectively. The growth rates of the recombinants with PM2 protein under the non-stress condition indicated that the expression of PM2 protein is not deleterious to the growth of yeast. The yeast cells expressing PM2 protein showed shorter lag period when transferred to a the control. This suggests that the expression yeast. But no obvious growth improvement was medium containing high salinity as compared to of PM2 protein could confer salt tolerance in observed in a high sorbitol medium between the recombinant INV/PM2 and INV/pYES2.
出处 《大豆科学》 CAS CSCD 北大核心 2007年第4期467-472,共6页 Soybean Science
基金 国家自然科学基金(30670180和30470107)资助
关键词 大豆 LEA3蛋白 PM2蛋白 耐盐性 酵母 Soybean LEA3 protein PM2 protein Salt tolerance Yeast
  • 相关文献

参考文献22

  • 1Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J].Planta,2003,218:1-14.
  • 2John T,Honjoh K,Yoshimoto M,et al.Molecular cloning and expression of hardening-induced genes in Chlorella vulgaris C -27:the most abundant clone encodes a late embryogenesis abundant protein[J].Plant and Cell Physiology,1995,36 (1):85-93.
  • 3Stacy R,Aalen R.Identification ofsequence homology between the internal hydrophilic repeated motifs of group 1 lateembryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis[J].Planta,1998,206(3):476-484.
  • 4Browne J,Tunnacliffe A,Burnell A,et al.Anhydrobiosis:plant desiccation gene found in a nematode[J].Nature,2002,416,38.
  • 5Kikawada T,Nakahara Y,Kanamori Y,et al.Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid[J].Biochemical and Biophysical Research Communications,2006,331:56-61.
  • 6Dure L.A repeating 11-mer amino acid motif and plant desiccation[J].The Plant Journal,1993,3:363-369.
  • 7Wise M J,Tunnacliffe A.POPP the question:what do LEA proteins do?[J].Trends in Plant Science,2004,9:13-17.
  • 8Xu D P,Duan X L,Wang B Y,et al.Expression of a late embryogenesis abundant protein gene,HVA1,from barley confers tolerance to water deficit and salt stress in transgenic rice[J].Plant Physiology,1996,110:249-257.
  • 9Sivamani E,Ahmed B,Wraith JM,et al.Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene[J].Plant Science,2000,155:1-9.
  • 10Zhang L,Ohta A,Takagi M,et al.Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins[J].The Journal of Biological Chemistry,2000,127:611-616.

二级参考文献75

  • 1孙海丹,兰英,刘昀,郑易之.LEA蛋白质11-氨基酸基序与植物抗旱性[J].东北师大学报(自然科学版),2004,36(3):85-90. 被引量:17
  • 2Browne J, Tunnacliffe A, Bumell A (2002). Plant desiccation gene found in a nematode. Nature 416, 38.
  • 3Bray EA, Bailey-Serres J, Weretilnyk E (2002). Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. Am Soc Plant Biol, Rockville, MD. pp. 1158-1173.
  • 4Close TJ (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97, 795-803.
  • 5Dure L III (1993). A repeat 11-mer amino acid motif and plant desiccation. Plant J 3, 363-369.
  • 6Dure L Ⅲ (2001). Occurence of a repeating 11-mer amino acid sequence motif in diverse organisms. Protein Peptide Left 8, 115-122.
  • 7Dure L Ⅲ, Greenway SC, Galau GA (1981). Developmental biochemistry of cottonseed embryogenesis and germination. XIV. Changing mRNA populations as shown by in vitro and protein synthesis. J Biochem 20, 4162-4168.
  • 8Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275, 5668-5674.
  • 9Gowrishankar J (1985). Identification of osmoresponsive genes in Escherichia coli: Evidence for participation of potassium and praline transport systems in osmoregulation. J Biochem 164, 434-445.
  • 10Imai R, Zhang L, Ohm A, Bray EA, Takagi M (1996). A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243-248.

共引文献49

同被引文献64

引证文献5

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部