期刊文献+

层状锂离子电池正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的制备及性能 被引量:19

Synthesis and Characteristics of Layered LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 Cathode Material for Lithium Rechargeable Batteries
下载PDF
导出
摘要 采用共沉淀法得到前驱体Ni0.8Co0.1Mn0.1(OH)2,利用前驱体与LiOH·H2O的高温固相反应得到高振实密度的锂离子电池层状正极材料LiNi0.8Co0.1Mn0.1O2(2.3~2.5g/cm3).初步探讨了合成条件对材料电化学性能的影响.通过X射线衍射(XRD)、扫描电镜(SEM)、热重-差热分析(TG/DTG)以及恒电流充放电测试对合成的样品进行了测试和表征.结果表明,在750℃、氧气气氛下合成的材料具有较好的电化学性能.通过XRD分析可知该材料为典型的六方晶系α-NaFeO2结构;SEM测试发现产物粒子是由500~800nm的一次小晶粒堆积形成的二次类球形粒子.电化学测试表明,其首次放电容量和库仑效率分别为168.6mA·h/g和90.5%,20次循环后容量为161.7mA·h/g,保持率达到95.9%,是一种具有应用前景的新型锂离子电池正极材料. Layered LiNi0.8Co0.1Mn0.1O2 powder was synthesized by reacting quasi-spherical Ni0.sCo0.1Mn0.1(OH)2 prepared by co-precipitation with LiOH·H2O through high temperature sintering route. The obtained powder was characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), thermogravimetric-differential thermogravimetric analysis (TG-DTG) and constant current charge-discharge cycling. The results revealed that the optimal preparation condition of the layered LiNi0.8Co0.1Mn0.1O2 was 750 ℃ under oxygen flowing. The XRD pattern of the sample prepared under the above condition could be identified by a typical structure of hexagonal α-NaFeO2 type. The SEM micrograph of LiNi0.8Co0.1Mn0.1O2 showed that a large number of spherical primary particles with an average size of about 500-800 nm piled loosely to form quasi-spherical secondary particles. Electrochemical measurements showed that it delivered an initial discharge capacity of 168.6 mA.h/g during the first charge and discharge cycle, and the first coulombic efficiency was 90.5%, and the discharge capacity in the 20th cycle was 161.7 mA.h/g. The material would be potential cathode material for Li-ion battery.
出处 《过程工程学报》 EI CAS CSCD 北大核心 2007年第4期817-821,共5页 The Chinese Journal of Process Engineering
基金 2005湖南省科技厅重点攻关基金资助项目(编号:05GK2015) 教育部重点基金资助项目(编号:205109) 湖南省教育厅重点基金资助项目(编号:04A054)
关键词 锂离子电池 正极材料 锂镍钴锰复合氧化物 层状结构 共沉淀法 lithium ion battery cathode material lithium nickel cobalt manganese oxide layered structure co-precipitation
  • 相关文献

参考文献14

  • 1Liu Z L,Yu A S,Lee J Y.Synthesis and Characterization of LiNi1-x-yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries[J].J.Power Sources,1999,81/82:416-419.
  • 2Liao L,Wang X Y,Wang X M,et al.Synthesis and Electrochemical Properties of Layered Li(Ni0.333Co0.333Mn0.293Al0.04)O2-zFz Cathode Materials Prepared by the Sol-Gel Method[J].J.Power Sources,2006,160(1):657-661.
  • 3胡学山,刘兴泉.LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的制备及电化学性能[J].电源技术,2006,30(3):183-186. 被引量:14
  • 4Tang A D,Huang K L.Electrochemical Properties and Structural Characterization of Layered LixNi0.35Co0.3Mn0.35O2+d Cathode Materials[J].Mater.Sci.Eng.B,2005,122(2):115-120.
  • 5Li J G,He X M,Zhao R S,et al.Stannum Doping of Layered LiNi3/8Co2/8Mn3/8O2 Cathode Materials with High Rate Capability for Li-ion Batteries[J].J.Power Sources,2006,158(1):524-528.
  • 6李建刚,万春荣,杨冬平,杨张平.LiNi_(3/8)Co_(2/8)Mn_(3/8)O_2正极材料氟掺杂改性研究[J].无机材料学报,2004,19(6):1298-1306. 被引量:24
  • 7Kim M H,Shin H S,Shin D,et al.Synthesis and Electrochemical Properties of Li(Ni0.8Co0.1Mn0.1)O2 and Li(Ni0.8Co0.2)O2 via Co-precipitation[J].J.Power Sources,2006,159(2):1328-1333.
  • 8Sun Y K,Myung S T,Park B C,et al.Synthesis of Spherical Nano-to Microscale Core Shell Particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and Their Applications to Lithium Batteries[J].Chem.Mater.,2006,18(22):5159-5163.
  • 9Sun Y K,Myung S T,Kim M H,et al.Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core Shell Structure as the Positive Electrode Material for Lithium Batteries[J].Am.Chem.Soc.,2005,127(38):13411-13418.
  • 10Weinstock I B.Recent Advances in the US Department of Energy's Energy Storage Technology Research and Development Programs for Hybrid Electric and Electric Vehicles[J].J.Power Sources,2002,110(2):471-474.

二级参考文献35

  • 1Iwahori T, Ozaki Y, Funahashi A, et al. J. Power Sources, 1999, 81-82: 872-876.
  • 2Broussely M. J. Power Sources, 1999, 81-82: 140-143.
  • 3Tanaka T, Ohta K, Arai N. J. Power Sources, 2001, 97-98: 2-6.
  • 4Nishi Y. J. Power Sources, 2001, 100: 101-106.
  • 5Leisingh R A, Palazzo M J, Takeuchi E S, et al. J. Electrochem. Soc., 2001, 148: A838-A844.
  • 6MacNeil D D, Lu Zh, Chen Zh, et al. J. Power Sources, 2002, 108: 8-14.
  • 7Lu Zh, MacNeil D D, Dahn J R. Electrochem. Solid-State Lett., 2001, 4: A191-A194.
  • 8Ohzuku T, Makimura Y. Chem. Lett., 2001, 744-755.
  • 9Kang S -H, Kim J, Stoll M E, et al. J. Power Sources, 2002, 112: 41-48.
  • 10Lu Zh, MacNeil D D, Dahn J R. Electrochem. Solid-State Lett., 2001, 4: A200-A203.

共引文献36

同被引文献154

引证文献19

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部