期刊文献+

基于小波变换与粗糙集的雷达目标识别方法

Method of Radar Target Identification Using WT and RS
下载PDF
导出
摘要 雷达目标识别是防空武器系统雷达信息处理的一个关键环节。在小波变换与粗糙集基础上提出一种雷达目标识别方法。小波变换能够提高了时———频分频率;粗糙集理论是一种新型的处理不确定性知识的数学工具。利用小波变换对目标原始信息进行分解,得到目标的能量特征向量;通过粗糙集简化关系表,删去冗余信息,用逻辑推理算法表示判别规则。应用小波变换与粗糙集能够满足利用不精确信息进行目标识别的需要。 Radar target identification is an important link in the chain of information processing for air - defense. This paper presents a method of radar target identification using wavelet transforms and rough sets. The wavelet transforms has strong frequency resolving power. Rough set theory is a newly developed mathematical tool for dealing with uncertain knowledge. The wavelet transforms is used to extract effective features from the echo. The rough set is used to delete redundant attributes. And the deducing rules are obtained. The application of wavelet transforms and RS theory in information processing meets the need of original information processing in target identification.
出处 《航空计算技术》 2007年第1期12-14,共3页 Aeronautical Computing Technique
基金 山西省自然基金(2006011038)
关键词 小波变换 粗糙集 雷达目标识别 wavelet transforms (WT) rough sets (RS) radar target identification
  • 相关文献

参考文献9

二级参考文献25

  • 1赵永强,张洪才,潘泉.基于粗集的目标识别[J].计算机应用,2003,23(z1):187-188. 被引量:3
  • 2邓雪清,董广军,范永弘.基于粗集理论的GIS属性数据挖掘[J].四川测绘,2003,26(4):147-150. 被引量:7
  • 3[1]Pawlak Z.Rough set:Theoretical Aspects of Reasoning about Data[M]. Kluwer, 1991.
  • 4[2]Tsumoto S. Knowledge discovery in clinical database and evaluation of discovered knowledge in outpatient clinic[J]. Information Science, 2000.
  • 5曾黄麟.粗集理论及其应用-关于数据推理的新方法[J].重庆:重庆大学出版社,1998,.
  • 6[1]Kim D, Bang SY. A Handwritten Numeral Character Classification Using Tolerant Rough Set[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(9): 923 -937.
  • 7[2]Quafaou M. - RST: a generalization of rough set theory[J]. Information Sciences, 2000(124): 301 - 316.
  • 8[3]Tsumoto S. Knowledge discovery in clinical database and evaluation of discovered knowledge in outpatient clinic[ J]. Information Science, 2000(124): 125 - 137.
  • 9[4]Ziarko W. Variable Precision Rough Set Model[ J]. Journal of computer and system sciences, 1993 (46): 39 - 59.
  • 10[5]Nelson DE, Starzyk JA. High Range Resolution Radar Signal Classification: A Partitioned Rough Set Approach[A]. Procedings of the 33rd Southeastern Symposium on System Theory[C]. Athens, OH,Mar 2001.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部