期刊文献+

基于相对主元分析的故障检测与诊断方法 被引量:3

Relative PCA-based Fault Detection and Diagnosis Method
下载PDF
导出
摘要 针对传统主元分析(PCA)在实际监控过程中存在的问题,文中提出相对主元(RPC)的概念,并建立了一种相对主元分析方法(RPCA)。RPCA在有效处理丢失数据及异常点问题的同时,能够根据各分量在系统中的不同重要性,赋以相应的权值,从而达到建立相对精确的RPC模型进行故障检测和诊断的目的。与传统方法相比,RPCA可以克服其在实际故障检测时能力的不足。给出的计算机仿真实验证明了该方法的有效性和实用性。 Aiming at the problems happened in the practical monitoring processing for traditional principle component analysis (PCA), the concept of relative principle component (RPC) is put forward as well as method of relative principle component analysis (RPCA), which can deal with the phenomenon of missing data and outlier effectively, endow with corresponding weights according to different importance of each variable in system and thereby built the relative accurate model to detect and diagnose fault. Comparing with the traditional method, RPCA can overcome some disadvantages of which for practical fault detection. A simulation has been given to demonstrate the effectiveness and practicability of the algorithm proposed.
出处 《弹箭与制导学报》 CSCD 北大核心 2007年第3期329-331,334,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国家自然科学基金项目(60572051) 浙江省科学重点科研国际合作项目(2006C24G2040012)
关键词 相对主元分析 故障检测 异常点 数据丢失 relative principle component analysis fault detection outlier data missing
  • 相关文献

参考文献5

  • 1W Choi,T R Kurfess.Dimensional measurement data analysis,Part 1:A zone fitting algorithm[J].Journal of Manufacturing Science and Engineering,1999,121(5):238-256.
  • 2J E Jackson.A user's guide to principal components[M].New York:Wiley-Interscience,1991.
  • 3Manabu Kano,Shinji Hasebe,Iori Hashimot.Contribution plots for fault identification based on the dissimilarity of process data[A].AICHE Annual Meeting[C].Los Angeles,CA,Nov.2000.
  • 4R A Johnson and D W Wichern.Applied multivariate statistical analysis(Fourth Edition)[M].Prentice-Hall,1998.
  • 5高翔,王纲,马纪虎.一种基于马氏距离建立简化多元统计模型的方法[J].信息与控制,2001,30(S1):676-680. 被引量:2

二级参考文献1

共引文献1

同被引文献31

  • 1张照煌,丁显,刘曼,曾菊瑛.基于小波变换的风电机组传动系统故障诊断与分析[J].应用基础与工程科学学报,2011,19(S1):210-218. 被引量:16
  • 2王荣辉,宗若雯,王正洲,廖光煊.主成分分析法和Fisher判别方法在汽油分类分析过程中的应用[J].中国科学技术大学学报,2006,36(12):1331-1335. 被引量:20
  • 3王天真,汤天浩,文成林,黄洪琼.相对主元分析方法及其在故障检测中的应用[J].系统仿真学报,2007,19(13):2889-2894. 被引量:7
  • 4MARTíNEZ R,CASTILLO O,AGUILAR L T.Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms [J].Information Sciences,2009,179(13):2158-2174.
  • 5VALLADA E,RUIZ R.Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem [J].Omega,2010,38(1/2):57-67.
  • 6KRESTA J V,MACGREGOR J F,MARLIN T E.Multivariate statistical monitoring of process operating performance [J].The Canadian Journal of Chemical Engineering,1991,69(1):35-47.
  • 7NIAZI A,LEARDI R.Genetic algorithms in chemometrics [J].Journal of Chemometrics,2012,26(6):345-351.
  • 8Hameed Z,Hong Y S,Cho Y M,et al.Condition monitoring and fault detection of wind turbines and related algorithms: a review [J].Renewable and Sustainable Energy Reviews,2009,13(1): 1-39.
  • 9Yang W X ,Richard C ,Tavner P J.Bivariate empirical mode decomposition and its contribution to wind turbine condition monitoring[J].Journal of Sound and Vibration,2011,330: 3766-3782.
  • 10姚兴佳,刘颖明,刘光德,邢作霞,鲍洁秋.大型风电机组振动分析和在线状态监测技术[J].沈阳工业大学学报,2007,29(6):627-632. 被引量:29

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部