期刊文献+

有限粒子数理想费米系统的磁化率 被引量:1

The Magnetic Susceptibility of An Ideal Fermi Das for A Finite Number of Particles in Weak Magnetic Field
下载PDF
导出
摘要 根据弱磁场中理想费米气体(忽略轨道运动)的正则配分函数Z(N),导出粒子数N+的几率分布函数G(β,N+)。运用统计平均方法,解析出有限粒子数理想费米系统泡利顺磁性平均磁化率的表达式。然后通过计算热力学极限下不同温度范围的磁化率pχ,得到不同温度范围内的有限粒子数理想费米系统泡利顺磁性平均磁化率的解析式。研究结果表明,有限粒子数理想费米系统的平均磁化率小于热力学极限下的磁化率,温度愈高,平均磁化率愈小;在低温条件下,磁场愈强,平均磁化率愈小;在高温条件下,磁场愈强,平均磁化率愈大。系统的粒子数N也对平均磁化率有直接的影响,粒子数N愈大,系统的平均磁化率愈大。 The probability distribution function G(β,N^+ ) of particle number N^+ is deduced on the basis of the Canonical partition function Z(N) of an ideal Fermi gas( The orbital motion of the fermi- ons is not considered) in weak magnetic field. The expression of average susceptibility for Pauli pa- ramagnetism of an ideal Fermi gas with finite number of particles is resolved by using statistical aver- age method. Then, the analytical expressions of average susceptibilities for Pauli paramagnetism of the system in different temperature region are derived by calculating susceptibilities Xp in the limit of thermodynamics at different temperatures. It is shown that the average magnetic susceptibility of the system with finite number of particles is less than that of thermodynamics - limit system and average susceptibility decreases with temperatures increasing. At low temperatures, the stronger magnetic filed is, the smaller average susceptibility is, but at high temperatures, the result is reversed. The particle number of the system N has a direct effect on average susceptibility, which is that the average sus- ceptibility increases with number of particles increasing.
出处 《江西科学》 2007年第4期370-373,396,共5页 Jiangxi Science
关键词 有限粒子数 理想费米气体 泡利顺磁性 几率分布 Finite number of particles, Ideal Fermi gas, Pauli paramagnetism, Probability distribution
  • 相关文献

参考文献18

  • 1Huang K,Yang C N.Quantum-mechanical many-body problem with hard-sphere interaction[J].Physical Review,1957,105(3):767-775.
  • 2Huang K,Yang C N,Luttinger J M.Imperfect Bose gas with hard-sphere interaction[J].Physical Review,1957,105(3):776-784.
  • 3Lee T D,Huang K,Yang C N.Eigenvalues and eifenfunctions of a Bose system of hard spheres and its low-temperature properties[J].Physical Review,1957,106(6):1135-1145.
  • 4Lee T D,Yang C N.Low-temperature behavior of a dilute Bose system of hard spheres[J].Physical Review,1958,112(5):1419-1429.
  • 5Bagnato V,Pritchard D E,Kleppner D.Bose-Einstein Condensation in an external potential[J].Physical Review A,1987,35(10):4354-4358.
  • 6Shi H L,Zheng W M.Thermodynamic properties of a trapped interacting Bose gas[J].Physica A,1998,258(3):303-310.
  • 7张思溟,叶飞.玻色-爱因斯坦凝聚体干涉现象的数值模拟[J].物理学报,1999,48(6):977-982. 被引量:7
  • 8衣学喜.有限数目捕获原子的玻色-爱因斯坦凝聚[J].物理学报,1999,48(6):995-1002. 被引量:6
  • 9Adhikari S K.Numerical solution of the two-dimensional Gross-Pitaevskii Equation for trapped interacting atoms[J].Physics Letters A,2000,265(1-2):91-96.
  • 10Chen L X,Yan Z J,Li M Z,et al.Bose-Einstein condensation of an ideal Bose gas trapped in any dimension[J].Journal of Physics A:Mathematical and General.1998,31(41):8289-8294.

二级参考文献39

  • 1汪志诚.热力学.统计物理(第二版)[M].北京:高等教育出版社,1993..
  • 2DeMarco B, Jin D S 1999 Science 285 1703.
  • 3Bagnato V, Pritchard D E, Kleppner D 1987 Phys. Rev. A 35 4354.
  • 4Shi H L, Zheng W M 1998 Physica A 258 303.
  • 5Adhikari S K 2000 Phys. Lett. A 265 91.
  • 6Chen L X, Yan Z J, Li M Z et al 1998 J. Phys. A : Math. Gen.31 8289.
  • 7Li M Z, Yan Z J, Chen J C et al 1998 Phys. Rev. A 55 1445.
  • 8Bruun G M, Burnrtt K 1998 Phys. Rev. A 58 2427.
  • 9Noronha J M B, Toms D J 2000 Phys. Lett. A 267 276.
  • 10Stoof H T C, Houbiers M, Sackett C A et al 1996 Phys. Rev.Lett. 76 10.

共引文献56

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部