期刊文献+

蚁群前馈神经网络在煤灰熔点预测中的应用 被引量:10

APPLICATION OF ANT COLONY ALGORITHM AND BP NEURAL NETWORK IN PREDICTION OF COAL ASH FUSION POINT
下载PDF
导出
摘要 提出了一种蚁群前馈神经网络模型。采用蚁群算法和BP算法相结合的方法训练神经网络,可避免单纯BP算法容易陷入局部最优的不足,降低算法对初值的敏感性。应用蚁群前馈神经网络建立了灰熔点的模型,并对模型的预测性能进行了验证。结果表明,该方法的预测精度比单一的BP神经网络模型有较大提高,训练后的网络模型可以用于煤灰熔点的预报。 An ant colony- BP neural network model has been put forward. Adopting method combining ant colony with back propagation (BP) algorithm to train the neural network, can overcome the drawback of pure BP algorithm to easily converge on local optima, decreasing the sensitivity of algorithm to the initial value. A model for predicting the coal ash fusion point has been established by using ant colony and BP neural network, and verification of prediction performance for the said model being carried out. Results show that the predicted precision of said method is more enhanced than that of a single BP neural network model, the trained network model can be used for prediction of coal ash fusion point.
机构地区 浙江大学
出处 《热力发电》 CAS 北大核心 2007年第8期23-26,共4页 Thermal Power Generation
关键词 煤灰熔点 蚁群算法 BP算法 蚁群前馈 神经网络 模型 coal ash fusion point ant colony algorithm BP neural network model
  • 相关文献

参考文献9

二级参考文献19

  • 1胡适耕(Hu Sigeng).泛函分析(Functional Analysis)[M].北京:高等教育出版社 (Beijing:Higher Education Press),2001..
  • 2张石生(Zhang Shisheng).不动点理论及应用(The fixed point theorem amp its application)[M].重庆:重庆出版社 (Chongqing:Chongqing Press),1984..
  • 3DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agent [ J ]. IEEE Trans on Systems,Man,and Cybernetics, 1996, 26( 1 ):29 - 41.
  • 4COLORNI A. Heuristics from nature for hard combinatorial optimization problems [ J ]. Int Trans in Opnl Res,1996, 3(1) :1 -21.
  • 5DORIGO M, GAMBARDELLA L M. A cooperative learning approach to the traveling salesman problem [ J ].IEEE Trans on Evolutionary Computation, 1997, 1 ( 1 ) :53 -66.
  • 6Walters D C, Sheble G B. Genetic algorithm solution of economic dispatch with valve point loading[J]. IEEE Trans on Power Systems,1993, 8(3): 1325-1332.
  • 7Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch[J]. IEEE Trans on Evolutionary Computation, 2003, 7(1): 83-94.
  • 8Damousis I G, Bakirtzis A G, Dokopoulos P S. Network-constrained economic dispatch using real-coded genetic algorithm[J]. IEEE Trans on Power Systems, 2003, 18(1): 198-205.
  • 9Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proceeding of the 1995 IEEE International Conference on Neural Network[C],Perth, Australia, 1995: 1942-1948.
  • 10Kennedy J, Eberhart R C. A new optimizer using particle swarm [A]. Proceeding of the Sixth International Symposium on Micro Machine and Human Science[C], Nagoya, Japan, 1995: 39-43.

共引文献226

同被引文献101

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部