期刊文献+

200km/h电力机车气动性能风洞试验与数值模拟 被引量:8

Wind Tunnel Experiment and Numerical Simulation of Aerodynamic Characteristics for 200km/h Electric Locomotive
下载PDF
导出
摘要 采用模型风洞试验和数值计算方法研究了200 km/h机车外形的气动性能.试验风洞为FD-09单回流低速风洞,模型缩尺比为1∶8.873.数值计算采用流体动力学软件FLUENT,数学模型为三维粘性不可压缩流体雷诺时均方程和κ-ε双方程湍流模型.数值模拟结果与模型风洞试验结果基本吻合.在此基础上对多个外形的设计参数进行了优化,并对优化后的模型流场作了数值计算,得出了一些有益的结论. The model wind tunnel experiment and numerical simulation method were employed to study the aerodynamic characteristics of 200km/h electric locomotive. The wind tunnel used in the experiment was a FD-09 type of low speed wind tunnel with single direction recycle flow. The ratio of reducing scale of the locomotive model was 1 : 8. 873. Numerical simulation was performed by using Software FLUENT. The 3D viscose uncompressible Reynolds equation and κ-ε double equations turbulence model were used in numerical analyses. The results of simulation were compared with those of the experiment, and both were generally consistent with each other. According to these results, several design parameters of the locomotive outline were optimized, and the newly optimized models were analyzed by numerical simulation method. Finally, some helpful conclusions were obtained.
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2007年第4期14-17,共4页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 中国北车集团公司科研项目(2004NJ001)
关键词 200KM/H电力机车 数值模拟 风洞试验 200 km/h electric locomotive numerical simulation wind tunnel experiment
  • 相关文献

参考文献6

二级参考文献29

  • 1[1]Alscher H, iguchi M, Eastham A R Boldea. Non-contact Suspension and Propulsion Technology [J]. Vehicle System Dynamics, 1983, 12(3): 259-289.
  • 2[2]Coffey HT, Chilton F, Hoppie LO. Magnetic Levitation of High-speed Ground Vehicles [C]. Proceedings of Applied Superconductive Conference, IEEE, New York, 1972: 62-75.
  • 3[3]Wyczalek FA. Maglev Transit Technology in Russia [C]. Proceedings of Maglev ′93, 13th International Conference on Magnetically-levitated Systems and Linear Drives, Argonne National Lab., Argonne IL, 1993: 88-93.
  • 4[4]Kolm HH, Thornton RD. Electromagnetic Flight [J]. Science of America, 1973, 229(4): 17-25.
  • 5[5]Coffey HT. Status and Review of the U.S. Maglev Program [C]. Proceedings of International Conference on Speedup Technology for Railway and Maglev Vehicles. Yokohama, Japan, 1993,123-129.
  • 6[6]Rhodes RG. Maglev Research in the UK [C]. Proceedings of Second International Seminar on Superconductive Magnetic Levitated Trains. T Ohtsuka and Mlguchi (eds). Miyazaki, Japan, 1982: 31-37.
  • 7[7]Rhodes RG, Mulhall BE. Magnetic Levitation for Rail Transport [M], New York, Clarendon Press Oxford, 1981.
  • 8[8]Chen SS, Rote DM, Coffey HT. Review of Vehicle/Guideway Interactions in Maglev Systems, in Fluid-Structure Interaction, Transient Thermal-Hydraulics, and Structural Mechanics[J]. ASME, New York, 1992, 231(3): 81-95.
  • 9[9]Bohn G, Steinmetz G. Electromagnetic Suspension System of the Magnetic Train Tansrapid [C]. Proceedings of International Conference on Maglev Transport ′85. Keidanren Kaikan, Tokyo, Japan, 1985: 107-114.
  • 10[10]Cai YG, Chen SS. Dynamic Characteristics of Magnetically-levitated Vehicle Systems [J]. Applied Mechanics Reviews, ASME, 1997, 50(11): 647-670.

共引文献151

同被引文献49

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部