期刊文献+

短脉冲激光刻蚀加工铜材料的机制 被引量:3

Mechanism of ablation in short-pulse laser-copper target interaction
下载PDF
导出
摘要 利用数值模拟方法,研究波长1064nm、脉冲宽度介于1~20ps的激光在刻蚀铜靶时,单次脉冲作用下非平衡场刻蚀和热平衡刻蚀两种机制的竞争过程。结果表明:随着脉冲宽度的增加,刻蚀过程由非平衡电荷分离场刻蚀占主导地位转变为热平衡刻蚀起主要作用,且脉冲宽度和激光峰值功率密度增大到一定程度后,各种电子加速机制在不同时刻开始突显,电子能量分布出现多峰结构。在能量密度为15J/cm^2的激光作用下,1和5ps脉宽对应的非平衡场刻蚀深度分别为110和101nm,10和20ps脉宽分别为25和18nm。 Using 1D MED101 code, the competition mechanism between nonequilibrium electrostatic field ablation and thermal equilibrium ablation was analyzed when the pulsed laser with wavelength 1 064 nm, pulse duration 1-20 ps, ablated copper in vacuum. Numerical simulation results revealed that when the pulse duration was short(1 -5 ps), the nonequilibrium electrostatic field ablation occupies the ablation process, and that when the pulse duration become longer(10-20 ps), the thermal equilibrium ablation is the main process in the whole ablation. It also demonstrates that the maximum temperature of electrons versus time will have multi-peaks as the pulse duration and peak power density increase. Especially, the ablation depths of the nonequilibrium electrostatic field are 110 nm and 101 nm for pulse duration 1 ps and 5 ps respectively, 25 nm and 18 nm for pulse duration 10 ps and 20 ps respectively under the energy fluenee 15 J/cm^2.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2007年第8期1271-1274,共4页 High Power Laser and Particle Beams
基金 高等学校博士学科点专项基金资助课题
关键词 皮秒脉冲激光 铜靶 平衡刻蚀 数值模拟 Picosecond pulsed laser Cu target Equilibrium ablation Numerical simulation
  • 相关文献

参考文献11

  • 1Gamaly E G, Rode A V, Davies B L. Ablation of solids by femtosecond lasers : ablation mechanism and ablation thresholds for metals and dielectrics[J]. Phys Plasma, 2002, 9(3) :949-957.
  • 2Preuss S, Demchuk A, Stuke M. Sub-picosecond UV laser ablation of metals[J]. Appl Phys A, 1995, 61(1) :33-37.
  • 3Chiehkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Appl Phys A, 1996, 63 (2): 109-115.
  • 4Corkum P B, Brunel F, Sherman N K. Thermal response of metals to ultrashort-pulse laser excitation[J]. Phys Rev Lett, 1988, 61(25): 2886-2889.
  • 5Stuart B C, Felt M D, Herman S, et al. Optical ablation by high-power short-pulse lasers[J]. J Opt Soc Am B, 1996, 13(2), 459-468.
  • 6Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl Phys Lett, 1994, 64(23) :3071-3073.
  • 7Gamaly E G, Madsen N R, Duering M, et al. Ablation of metals with picosecond laser pulses:evidence of long-lived nonequilibrium conditions at the surface[J]. Phys Rev B, 2005, 71(17):174405.
  • 8Momma C, Chichkov B N, Nolte S, et al. Short-pulse laser ablation of solid targets[J]. Opt Commun, 1996, 129:134-142.
  • 9周幼华,陆培祥,龙华,杨光,郑启光.脉冲激光沉积β-FeSi_2/Si(111)薄膜的工艺条件[J].中国激光,2006,33(9):1277-1281. 被引量:8
  • 10Christiansen J P, Ashby T F, Roberts K V. MEDUSA: a one-dimensional laser fusion code[J]. Comput Phys Commun, 1974, 7(5) : 271- 287.

二级参考文献12

  • 1周幼华,郑启光,杨光,戴能利,陆培祥.飞秒脉冲激光沉积Si基a轴择优取向的钛酸铋铁电薄膜[J].中国激光,2006,33(6):832-836. 被引量:8
  • 2Tsuyoshi Yoshitake, Tatsuya Nagamoto, Kunihito Nagayama. Microstructure of β-FeSi2 thin films prepared by pulsed laser deposition [J]. Thin Solid Films, 2001, 381:236-243.
  • 3E. Millon, O. Albert, J. C. Loulergue et al.. Growth of heteroepitaxial ZnO thin films by femtosecond pulsed-laser deposition [J]. J. Appl. Phys., 2000, 88(11):6937- 6939.
  • 4P. P. Pronko, P. A. VanRompay, Z. Zhang et al.. Isotope enrichment in laser ablation plumes and commensurately deposited thin films [J]. Phys. Rev. Lett., 1999, 83(13) :2596-2599.
  • 5Z. Zhang, P. A. VanRompay, J. A. Nees et al.. Nitride film deposition by femtosecond and nanosecond laser ablation in lowpressure nitrogen discharge gas [J]. Appl. Surf. Sci. , 2000,154-155:165-171.
  • 6Peixiang Lu, Youhua Zhou, Qiguang Zhenget al.. Single-phase β-FeSi2 thin films prepared on Si wafer by femtosecond laser ablation and its photoluminescence at room temperature [J]. Phys. Lett. A, 2006, 350(3-4):293-296.
  • 7M. C. Bost, J. E. Mahan. Optical properties of semiconducting iron disilicide thin films [J]. J. Appl. Phys. , 1985, 58(7) :2696-2703.
  • 8Ch. Stuhlmann, J. Schmidt, H. Ibach. Semiconducting iron disilicide films on Si(Ⅲ) : A high resolution electronenergy loss spectroscopy study [J]. J. Appl. Phys., 1992, 72(12):5905-5912.
  • 9Charalabos A. Dimitriadis, Jurgen H. Werner. Growth mechanism and morphology of semiconducting FeSi2 films [J].J. Appl. Phys. , 1990, 68(1):93-96.
  • 10Lucio Martinelli, E. Grilli, M. Guzzi et al.. Room temperature electroluminescence of ion-beam-synthesized β-FeSi2 precipitates in silicon [J]. Appl. Phys. Lett. , 2003, 83(4) :794-796.

共引文献7

同被引文献48

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部