期刊文献+

基于初距划分的纯方位目标跟踪的EKF滤波器群 被引量:1

Group of EKF Based on First-range Partition for Bearings-only Target Tracking
下载PDF
导出
摘要 利用EKF对纯方位目标跟踪的工程算法进行了探讨。目标初距范围被划分成若干个小单元,每个小单元形成预估初距;在观测器匀速直航下,EKF滤波器群分别估计目标-观测器相对速度与初始距离比值;然后每个滤波器利用新量测方位估计目标参数,同时依据Bayes-ian公式更新滤波器概率密度;观测器匀速下预估状态初始值,降低了误差影响,提高了推广卡尔曼滤波方法(EKF)收敛率;多滤波器算法便于并行计算和实时处理,符合工程要求。 Extended Kalman filter (EKF) is applied to design the engineering algorithm for bearings-only tracking. The prior range region is divided into a number of smaller cells treated as initial- range. The ratios of relative velocity between target and observer to initial-range are estimated by the group of EKF filter while observer travels with constant velocity. Utilizing a sequence of new measurements collected by a manoeuvre observer, the group of filters estimate the target motion parame- ters. Their probability of density function is updated according to Bayesian rule. The influence of error can be alleviated and the ratio of convergence can be increased due to measurements collected by the fixed observer in initial value of state. The algorithm accords with the need of engineering that can calculate real time and possesses parallel.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2007年第4期440-443,共4页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60174028) 江苏省2004年"青蓝工程"优秀青年骨干教师基金项目 淮海工学院自然科学基金(Z2003016)
关键词 纯方位跟踪 初距划分 推广卡尔曼滤波 状态初始值 bearings-only tracking first-range partition extended Kalman filter initial value of state
  • 相关文献

参考文献6

  • 1董志荣.舰艇指控系统的理论基础[M].北京:国防工业出版社,1995..
  • 2Aidala V J,Hammel S E.Utilization of modified polar coordinates for bearings-only tracking[J].IEEE Trans Auto Cont,1983,28 (3):283 -294.
  • 3Dinh T P.Some quick and efficient methods for bearing-only target motion analysis[J].IEEE Trans on signal processing,1993,41 (9):2 737 -2 751.
  • 4Kronhamn T R.Bearings-only target motion analysis based on a multihypothesis Kalman filter and adaptive ownship motion control[J].IEE Proc-Radar,Sonar Naving,1998,145 (4):247-252.
  • 5Peach N,Ceng M.Bearings-only tracking using a set of range-parameterised extended Kalman filters[J].IEE Proc-Control Theory Appl,1995,142 (1):73 -80.
  • 6Karlsson R,Gustafsson F.Recursive Bayesian estimation:Bearings-only applications[J].IEE Proc-Radar,Sonar Navig,2005,152 (5):305 -303.

共引文献40

同被引文献13

  • 1Nardone S C, Lingren A G. Fundamental properties and performance of conventional bearings-only target motion analysis [ J ]. IEEE Transactions on Automatic Control, 1984, 29(9): 775-787.
  • 2Bar-shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation[ M]. New York: Wiley, 2001.
  • 3Doucet A, Freitas N, Gordon N. Sequential Monte Carlo methods in practice[ M ]. New York: SpringerVerlag, 2001.
  • 4Kerr T H. Status of CR-like lower bounds for nonlinear filtering [ J ]. IEEE Transactions on Aerosppace and Electronic Systems, 1989, 25 (9) : 590 - 601.
  • 5Hemandez M, Kirubarajan T, Bar-Shalom Y. Multisensor resource deployment using posterior CramerRao bounds[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2) : 399 -416.
  • 6Passerieux J M, Cappel D V. Optimal observer maneuver for bearings-only tracking [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3) : 777 - 788.
  • 7Tichavsky P, Muravchik C H, Nehorai A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering [ J ]. IEEE Transactions on Signal Processing, 1998, 46(5) : 1386 - 1396.
  • 8Boers Y, Driessen H. Results on the modified Riccati equation: Target tracking applications [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1) : 379 -384.
  • 9Sinopol B, Schenato L, Fransceschetti M, et al. Kalman filtering with intermittent observations [ J ]. IEEE Transactions on Automatic Control, 2004, 49 (9) : 1453 - 1464.
  • 10Zhang X, Bar-Shalom Y. Dynamic Cramer-Rao bound for target tracking in clutter[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4) : 1154 - 1167.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部