期刊文献+

汉语NP识别方法的实验比较研究

The Test Comparison Research on Chinese NP Recognition Methods
下载PDF
导出
摘要 利用错误驱动法、支持向量机法和隐马尔可模型3种方法对汉语文本进行名词短语识别,对实验进行比较分析,结果表明SVM与HMM的识别效果总体上要好于错误驱动法,HMM法在封闭测试中优势明显.研究表明错误驱动法适用于解决从语料库中学习转换规则的传统问题;SVM方法适用于解决两类别的分类问题;而HMM方法侧重应用在与线性序列相关的现象上. This paper adopts three methods including Error-Driven, Support Vector Machines and Hidden Markov Model to recognize noun phrases in Chinese texts. Through the comparison and analysis to the experiments , the result shows that the recognition effect of the latter two methods is better then the effect of the first one, and the function of HMM in the closed test is dominant. The study shows that the Error-Driven method is often used to solve the traditional problems of learning transformation regulations from corpus, SVM is adaptable to solve the classification problem of two categories, and that HMM is mainly used on the problems related to linear array.
作者 李荣 郑家恒
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期27-29,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(60473139) 忻州师范学院科研基金(200623)
关键词 错误驱动 支持向量机 隐马尔可夫模型 短语识别 Error-Driven Support Vector Machines Hidden Markov Model phrase recognition
  • 相关文献

参考文献6

  • 1Church K W.A stochastic parts program and noun phrase parser for unrestricted text[C].Proceedings of the Second Conference on Applied Natural Language Processing,Austin Texas,1988.
  • 2Brill E.Transformation-based error-driven learning and natural language processing:a case study in part-of-speech tagging[J].Computational Linguistics,1995,21(4):543-565.
  • 3张健沛,徐华.支持向量机(SVM)主动学习方法研究与应用[J].计算机应用,2004,24(1):1-3. 被引量:51
  • 4曹建芳,郑家恒.基于SVM的汉语动词短语识别[J].咸阳师范学院学报,2004,19(6):32-34. 被引量:3
  • 5Rabiner L R.A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition[J].Proc IEEE,1989,77(2):257-286.
  • 6李荣.汉语名词短语自动识别方法研究[D].太原:山西大学计算机与信息技术学院,2004.

二级参考文献9

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部