期刊文献+

人工神经网络在带钢力学性能预测中的应用 被引量:4

Application of Artificial Neural Network Forecasting on Mechanical Performance of Strip
下载PDF
导出
摘要 本文运用神经网络原理建立了带钢力学性能预测的神经网络模型,并用该模型对某钢厂带钢力学性能进行了预测,还对预测结果和真实数据进行了比较,结果表明:相对误差低于1%,而且收敛速度快,泛化能力好。预测模型可减少或取消实际生产中的破坏性检测试验,从而提高经济效益。另外,文中还总结了提高神经网络性能的方法。 A modal for strip mechanical performance forecasting was established, based on artificial neural network, Using this modal, a test of forecasting on strip mechanical performance was done. After that, the real data was compared with the data came out from the forecasting modal, the result showed that the modal have an error rate no more than 1%, a rapid constringency speed, and a good popularization ability. Ruinous tests can be reduced or completely cut down if the modal was introduced into and economic benefit can be improved also. In addition, the method of improving neural network performance was proposed in this paper.
作者 赵健 李安贵
机构地区 北京科技大学
出处 《微计算机信息》 北大核心 2007年第22期285-286,274,共3页 Control & Automation
基金 国家自然科学基金(0074034)
关键词 人工神经网络(ANN) 力学性能 预测 带钢 artificial neural network (ANN), mechanical performance, forecasting, strip
  • 相关文献

参考文献5

二级参考文献20

  • 1魏庆福.工业控制机的软件工程方法[J].微计算机信息,1994,10(6):2-5. 被引量:2
  • 2[1]Davison M, Anderson C L, Marcus B. Development of a hybrid model for electrical power spot prices[J]. IEEE Trans on Power System, 2002, 17(2):257-264.
  • 3[2]Nogales F J, Coejejo A.J, Espinola R. Forecasting next-day electricity prices by time series modiels[J]. IEEE Trans on Power System, 2002, 17(2):342-348.
  • 4[3]O'Neill-Carrillo E, Heydt G T, Kostelich E J. Nonlinear deterministic modeling of highly varying loads[J]. IEEE Trans on Power Delivery, 1999,14(2): 537-542.
  • 5[4]Harrison R G, Yu D, Oxley L, et al. Non-linear noise reduction and detecting chaos :some evidence from the S&P Composite Price Index[J]. Mathematics and Computers in Simulation, 1999, 48(6): 497-502.
  • 6[5]Parker T S, Chua L O. Practical numerical algorithms for chantic systems[M], Berlin:Springer Verlag, 1989.
  • 7[6]Fraser A M, Swinney H L, Independent coordinates for strange attractors fiom mutual information[J]. Physical Review A, 1986, 33: 1134-1140.
  • 8[7]Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical ReviewA, 1992, 45(6): 3403-3411.
  • 9[8]Grassberger P, Procaccia I. Measuring the strangeness of stange attractor[J]. PhhysicaD, 1983, 9:198-206.
  • 10[9]Rosenstein M T, Coilins JJ, De Luca C J. Apractical method for calculating largest Lyapunov exponents from small data sets[J]. PhysicaD, 1993, 65:117-134.

共引文献66

同被引文献9

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部