期刊文献+

变精度粗糙集挖掘在丙酮精制中的应用 被引量:1

The Application of Data Mining based on the Variable Precision Rough Set Theory in Acetone Refining
下载PDF
导出
摘要 在标准粗糙集数据挖掘算法基础上,研究变精度粗糙集数据挖掘方法在丙酮精制产品质量预报中的应用,并与标准粗糙集方法、BP算法及Apriori算法进行比较。采用实际丙酮精制生产数据进行实验,结果表明,变精度粗糙集数据挖掘算法的应用效果显著优于BP算法和Apriori算法,相对于标准粗糙集方法也有明显提高,具有一定的实用价值和研究前景。 Based on rough set data mining algorithm, data mining model based on the variable precision rough set theory is applied to prediction of product qualities in Acetone refining process. The method is also compared with back-propagation neural network (BPNN), Apriori algorithm and original rough set algorithm. The experimental results on the real industrial data of a Acetone refining process demonstrate that the variable precision rough set data mining method achieves better performance than BPNN and Apriori algorithm, and also better than rough set algorithm.
出处 《微计算机信息》 北大核心 2007年第24期4-6,共3页 Control & Automation
基金 国家自然科学基金(60404012)
关键词 变精度粗糙集 丙酮精制 质量预报 Variable Precision Rough set, Acetone refining process, Quality prediction
  • 相关文献

参考文献4

二级参考文献2

  • 1门瑞霞,石春和.智能电路板的闭环测试与故障诊断[J].微计算机信息,2005,21(1):158-159. 被引量:18
  • 2A. Kusiak, J. A, Kern. H. Kernstirte, B. T, Tseng, “Autonomous decision-making: a data mining approach”. IEEE Transactions on Information Technology in Biomedicine, Vol. 4. No. 4, December 2000.

共引文献117

同被引文献5

  • 1W. Ziarko, Variable precision rough set model [J], Journal of Computer and System Sciences 46(1993):p39-59.
  • 2Hu X., Cercone N, Ziarko W.GRS: A Generalized Rough Sets Model for Data Mining [C].Application Proc of the 3rd Joint Conference of Information Sciences, Vol. 3, Durham, NC, USA, Match 1-3, 1997.
  • 3Goldberg,D., Genetic Algorithms in Search, Optimization and Machine Learning, Reading, Mass.: Addison-Wesley, 1989.
  • 4Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Science, 1993,46:39-59.
  • 5X. Hu, T. Y. Lin.A New Rough Sets Model Based on Database Systems [A].RSFDGrC 2003:p114-121.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部