期刊文献+

基于贝叶斯最小风险分类的邮件过滤系统

E-mail Filter System Based on Bayesian Smallest Risk Classification
下载PDF
导出
摘要 针对互联网上垃圾邮件给用户带来种种困扰的问题,本文提出了一种基于贝叶斯最小风险分类方法的邮件过滤系统。本方法通过设置损失代价函数,在过滤大部分垃圾邮件的同时,保证了将合法邮件保留,避免了将有用邮件误分类为垃圾邮件时,给用户带来的损失。实验结果表明,本文提出的垃圾邮件过滤系统效果较好。 To solve the problem that the rubbish E-mail brings so much trouble to the internet user, the paper proposes a E-mail filter system based on the Bayesian Smallest Risk Classification Method. The method not only removes most rubbish E-mails, but also saves every natural ones by setting the cost function decision table. So the proposed filter system avoids the losing that suffers from the error classification of useful E-mail to rubbish ones. The experiment results show that our E-mail filter system is more efficient.
出处 《微计算机信息》 北大核心 2007年第24期116-117,58,共3页 Control & Automation
基金 国家自然科学基金(60496323)
关键词 垃圾邮件 贝叶斯分类 最小风险 Rubbish E-marls, Bayesian Classification, Smallest Risk
  • 相关文献

参考文献5

二级参考文献9

  • 1李茹,李弼程,夏阳.E-mail邮件结构分析及其在邮件筛选中的应用[J].微计算机信息,2005,21(11X):24-26. 被引量:9
  • 2JASON D.M.Rennie.Ifile:An Application of Maching Learning to E-Mail Filtering.In: Proc Of The Sixth ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. Boston,2000(8):20-23.
  • 3Mehran Sahami,susan Dumais,David TIeckerman,el al.A Bayesian Approach to Filtering E-Mail.In Lcarning for Text Categorizatio,AAAI Press,1998.
  • 4MIME (Multipurpose Intemet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies. http://citeseer.ist.psu.edu.
  • 5Le Zhang, Jinguo Zhu, TianShun Yao. An Evaluation of Statistical Spam Filtering Techniques.ACM Transactions on Asian Language Information processing.Vol.3,No 4,December 2004.
  • 6Konstantin Tretyakov. Machine Learing Teehinques in Spare Filtering
  • 7Tom M.Mitchell著,曾华军等译,机器学习.机械工业出版社,2003年出版
  • 8谭立球,谷士文,费耀平.个人化电子邮件自动过滤系统的设计[J].计算机应用,2002,22(6):54-55. 被引量:17
  • 9中国互联网络信息中心域名争议解决办法程序规则[J].电子知识产权,2003(4):14-18. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部