期刊文献+

基于人眼视觉特征的图像逆半调算法 被引量:1

Inverse Halftoning Algorithm Based on the Vision Characteristics
下载PDF
导出
摘要 本文针对灰度图像逆半调算法复杂度高的特点,提出了一种基于人眼视觉特征的逆半调算法。算法根据人类视觉系统具有的对比敏感度特性、多通道特性,将其引入图像逆半调系统中,并根据人眼视觉系统分辨细节的能力和误差分散数字半调方法中半调误差的分散比例,设计了逆半调滤波器。为了验证算法的有效性,本算法与当前公开发表的三种逆半调方法的实验结果做了比较,实验结果表明本算法的逆半调图像质量较好,并且算法的时间复杂度、空间复杂度较低。 The inverse halftoning algorithm is used to reconstruct a gray image from an input halftone image. Considering that gray inverse halftoning algorithm featured the higher complexity of time and space, a novel algorithm based on human vision characteristics is proposed in this paper. The new inverse halftoning system imitates human vision system and has some of its characteristics. The size of filter is designed according to the eyes' ability of resolution details and the ratio among halftone errors in halftoning algo- rithm. The experimental results show that the proposed methods achieve a better quality and a lower complexity of time and space when compared to the currently published two methods, by Mese and Vaidyanathan and Kuo Liang Chung et al.
出处 《微计算机信息》 北大核心 2007年第02X期289-291,共3页 Control & Automation
基金 陕西省自然科学基金项目(2004F32)
关键词 逆半调 人类视觉系统 对比敏感度特性 对立色空间 inverse halftoning,human vision system,contrast sensitivity function,opponent model
  • 相关文献

参考文献6

  • 1陆旭光,汪岳峰,胡文刚,潘攀.基于视觉感兴趣区的图像质量评价方法[J].微计算机信息,2005,21(10X):95-96. 被引量:16
  • 2Naranjan Damer-venkata,Thomas D.Kitt,Wilsons,et al.Image quality assessment based on a degradation model[J].IEEE Transactions.On Image Proceedings,2000,9 (4):636-650.
  • 3Opponent Color Spaces.EE637 Digital Image Processing Ⅰ:Purdue University VISE-January 18,2004.
  • 4X.Zhang and B.A.Wandell.A Spatial extension of CIE Lab for digital color image reproduction.SID Tech.Dig,1996:731-734.
  • 5T.J.Flohr,et al.Model based color image quantization.SPIE Human Vision,Visual Proc.and Digital Display Ⅳ,1993,Vol.1913:270-281.
  • 6Vishal Monga,et al.Linear Color Separable,Human Visual System Models for Vector Error Diffusion Halftoning.IEEE Signal Processing Letters,April 2003,Vol.10,No.4:93-97.

二级参考文献2

  • 1Claudio M. Privitera and Lawrence W. Stark. Algorithm for Defining Visual Regions-of-Interest: Comparison with Eye Fixations. IEEE :Transactions on Pattern Analysis and Machine Intelligence. VOL.22, NO.9SEPTEMBER 2000.
  • 2汪孔桥,沈兰荪,邢昕.一种基于视觉兴趣性的图象质量评价方法[J].中国图象图形学报(A辑),2000,5(4):300-303. 被引量:45

共引文献15

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部