期刊文献+

基于粒子群的电力系统短期负荷预测 被引量:10

Short-term load forecast in Power system based on PSO optimizing algorithm
下载PDF
导出
摘要 短期负荷预测是电力系统管理的一项重要方法,准确的负荷预测可以保证用户得到安全、经济、合理的供电。针对负荷预测方法的多样性,在传统的BP网络用于负荷预测的基础上,提出粒子群PSO(Particle Swarm Optimizer)优化神经网络权值的算法,并应用到电力系统短期负荷预测中。仿真结果表明PSO优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也明显地得到提高。 Short-term load forecast is very important in power system management, accurate load forecast can ensure customer to get safe, economical and reasonable power supply. Among many optimizing algorithms used for load forecasting, a novel PSO (Particle Swarm Optimizer) algorithm is proposed for optimizing the weight of NN (Neural Network)and is applied to short term load forecast in power system. It is shown that convergence speed and precision of BP neural network are improved.
作者 庄媛媛
机构地区 四川大学
出处 《微计算机信息》 北大核心 2007年第03X期9-11,共3页 Control & Automation
关键词 PSO BP神经网络 适应度 迭代 模糊推理 PSO, BP network, fitness,iteration algorithms, fuzzy logic.
  • 相关文献

参考文献9

  • 1Franchini M.Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfallrunoff models[J].Hydrological Science Journal,1996,41(1):21-39.
  • 2Hornik K,Stinchcombc M,White H.Multilayer feed-forward networks are universal approximators[J].Neural Network,1989,2(5):359-366.
  • 3Rumelhart D E,Hinton G E,Williams R J.Learning representations by back propagating errors[J].Nature,1986,323(11):533-536.
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[Al.Proceedings of IEEE International Conference on Neutral Networks[C].Australia:IEEE,1995.1942-1948.
  • 5孙增圻等.智能控制理论与技术[M].北京:清华大学出版社.2000,1.
  • 6高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:95
  • 7程其云,孙才新,张晓星,周湶,杜鹏.以神经网络与模糊逻辑互补的电力系统短期负荷预测模型及方法[J].电工技术学报,2004,19(10):53-58. 被引量:23
  • 8许东,吴铮.基于Matlab 6.X的系统分析与设计[M].西安:西安电子科技大学出版社,2002:77—85.
  • 9刘福才,牛海涛,高秀伟.电力系统短期负荷预测的一种模糊建模方法[J].微计算机信息,2003,19(5):60-61. 被引量:5

二级参考文献18

  • 1[1]Hornik K,Stinchcombe M,White H.Multilayer feed-forward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.
  • 2[2]Rumelhart D E,Hinton G E,Williams R J.Learning representations by back propagating errors[J].Nature,1986,323(11):533-536.
  • 3[3]Sexton R S,Dorsey R E.Reliable classification using neural networks:a genetic algorithm and backpropagation comparison[J].Decision Support Systems,2000,30(1):11-22.
  • 4[4]Yang J M,Kao C Y.A robust evolutionary algorithm for training neural networks[J].Neural Computing and Application,2001,10(3):214-230.
  • 5[5]Franchini M.Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models[J].Hydrological Science Journal,1996,41(1):21-39.
  • 6[6]Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceedings of IEEE International Conference on Neutral Networks[C].Australia:IEEE,1995.1942-1948.
  • 7[7]Shi Y H,Eberhart RC.Empirical study of particle swarm optimization[A].Proceedings of IEEE International Congress on Evolutionary Computation[C].USA:IEEE,1999.6-9.
  • 8[8]Yoshida H,Kawata K,Yoshikazu F.A Particle swarm optimization for reactive power and voltage control considering voltage security assessment[J].IEEE Transaction on Power System,2000,15(4):1232-1239.
  • 9[9]Carlisle A,Dozier G.Adapting particle swarm optimization to dynamic environments[A].Proceedings of International Conference on Artificial Intelligence[C].USA:IEEE,2000.11-15.
  • 10R. Campo and P. Ruiz..Adaptive weather-sensitive short-time load forecasting[J]. IEEE Transactions on Power System , 1989,Vol. PWRS-2..

共引文献125

同被引文献46

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部