期刊文献+

时序多相关-经验模式分解方法及其对车辆振动信号的分析 被引量:5

Multi-Correlation of Time Series and Empirical Mode Decomposition and Vibration Signal Analysis of Vehicle
下载PDF
导出
摘要 振动信号的特征提取由于受强背景噪声的干扰往往具有很大的困难。在作者提出的时序多相关-经验模式分解方法的基础上,提出了一种相应的改进方法,将其扩展到一般振动信号的特征提取。先对采集到的时间序列作多相关处理,在时序多相关处理时,为了达到克服噪声干扰的目的,取一段采样序列,对其作周期延拓,使得在多相关处理后,噪声仅仅体现在多相关序列的常数项里面。再对得到的多相关数据作经验模式分解,选择满足要求的本征模式函数并作边际谱分析,以达到提取强噪声背景下的特征信号的目的。仿真分析表明了该方法的有效性。最后将它应用到实际某特种车辆振动信号的特征提取中,得到了满意的结果。 The strong background noise always makes great difficulty to the feature extraction of the vibration signal. The multi-correlation of time series and empirical mode decomposition (MCTS-EMD) is extended and used to extract the feature of the vibration signal of the common machine. Firstly, one sampling of the time series is selected, and the periodic extending is the next step, then the multi-correlation process is made for the time series. In order to overcome the interference of the zero-mean noise disposing MCTS, the noise only appears in the constant terms for MCTS. The feature extraction of the vibration signal is obtained in the strong background noise by EMD after MCTS. The simulation analysis proves that the method is effective. Finally, the extended MCTS-EMD is used to extract the feature signal of a special vehicle and it is in agreement with the analysis result.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第4期465-470,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金(04I52066)资助项目 江苏省自然科学基金(BK2007197)资助项目
关键词 车辆 特征提取 时间序列 多相关 经验模式分解 vehicle feature extraction time series multi-correlation empirical mode decomposition
  • 相关文献

参考文献13

  • 1陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用[J].振动工程学报,2001,14(2):125-134. 被引量:45
  • 2丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(1):13-20. 被引量:42
  • 3Sheen Y T.A complex filter for vibration signal demodulation in bearing defect diagnosis[J].Journal of Sound and Vibration,2004,276(1-2):105-119.
  • 4Peng Zhike,Chu Fulei.Application of the wavelet transform in machine condition monitoring and fault diagnostics:a review with bibliography[J].Mechanical Systems and Signal Processing,2004,18(2):199-221.
  • 5李舜酩,许庆余,李允平.行驶车辆振动信号的小波分析[J].汽车工程,1997,19(6):370-375. 被引量:11
  • 6Lee S K,White P R.Higher-order time-frequency analysis and its application to fault detection in rotating machinery[J].Mechanical Systems and Signal Processing,1997,11(4):637-650.
  • 7Tommy W S C,Tan H Z.HOS-based nonparametric and parametric methodologies for machine fault detection[J].IEEE Transactions on Industrial Electronics,2000,47(5):1051-1059.
  • 8Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of Royal Society of London Series A,1998,454(1971):903-995.
  • 9Huang N E,Shen Z,Long S R.A new view of nonlinear water waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999(31):417-457.
  • 10廖庆斌,李舜酩.一种旋转机械振动信号特征提取的新方法[J].中国机械工程,2006,17(16):1675-1679. 被引量:23

二级参考文献36

共引文献111

同被引文献71

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部