摘要
设A=(aij)∈Cn×n,若存在α∈(0,1),使i≠j(i,j∈N={1,2,…,n})有|aiiajj|≥(RiRj)α(SiSj)1-α,则称A为α-双对角占优矩阵。首先推广α-双对角占优矩阵的概念到广义α-双对角占优,然后得到了判别广义α-双对角占优矩阵的一个充分必要条件,改进和推广了已有的结论,进一步丰富和完善了α-双对角占优矩阵的理论。
Let A=(aij)∈C^n×n, if there existsa∈(O,1), which can make {aiiajj}≥(RiRj)^a(SiSj)^1-a be right for i≠j(i,j∈N={1,2,…,n}) it is extended the concept to generalized α-doubly diagonally dominant matrix, and obtained a new necessary and sufficient condition for A to be generalized α-doubly diagonally dominant matrices, improving and generalizing the related results. This result enriches and improves the theory of α-doubly diagonally dominant matrices.
出处
《辽宁石油化工大学学报》
CAS
2007年第3期82-85,共4页
Journal of Liaoning Petrochemical University
基金
辽宁省教育厅高校科研项目(2004F100)
辽宁石油化工大学重点学科建设资助项目(K200409)